WARPED COMPACTIFICATION ON SIGMA MODEL, SKYRMIONS IN SIX DIMENSIONS

2007 ◽  
Vol 22 (31) ◽  
pp. 5670-5684 ◽  
Author(s):  
Yuta Kodama ◽  
Kento Kokubu ◽  
Nobuyuki Sawado ◽  
Noriko Shiiki

We construct two distinct brane solutions in six dimensional effective field theory models. The CP 1 sigma model and the baby skyrmion realize warped compactification of the extra dimensions for negative bulk cosmological constant. Higher winding number solutions of the baby skyrmion are also presented.

1999 ◽  
Vol 82 (25) ◽  
pp. 4971-4974 ◽  
Author(s):  
Andrew G. Cohen ◽  
David B. Kaplan ◽  
Ann E. Nelson

2015 ◽  
Vol 24 (12) ◽  
pp. 1544019 ◽  
Author(s):  
Carlos Barceló ◽  
Raúl Carballo-Rubio ◽  
Luis J. Garay

The cosmological constant problem can be understood as the failure of the decoupling principle behind effective field theory, so that some quantities in the low-energy theory are extremely sensitive to the high-energy properties. While this reflects the genuine character of the cosmological constant, finding an adequate effective field theory framework which avoids this naturalness problem may represent a step forward to understand nature. Following this intuition, we consider a minimal modification of the structure of general relativity which as an effective theory permits to work consistently at low energies, i.e. below the quantum gravity scale. This effective description preserves the classical phenomenology of general relativity and the particle spectrum of the standard model, at the price of changing our conceptual and mathematical picture of spacetime.


2006 ◽  
Vol 21 (17) ◽  
pp. 3441-3472 ◽  
Author(s):  
JASON KUMAR

We review some basic flux vacua counting techniques and results, focusing on the distributions of properties over different regions of the landscape of string vacua and assessing the phenomenological implications. The topics we discuss include: an overview of how moduli are stabilized and how vacua are counted; the applicability of effective field theory; the uses of and differences between probabilistic and statistical analysis (and the relation to the anthropic principle); the distribution of various parameters on the landscape, including cosmological constant, gauge group rank, and supersymmetry-breaking scale; "friendly landscapes;" open string moduli; the (in)finiteness of the number of phenomenologically viable vacua; etc. At all points, we attempt to connect this study to the phenomenology of vacua which are experimentally viable.


2017 ◽  
Vol 32 (06n07) ◽  
pp. 1750037 ◽  
Author(s):  
Yugo Abe ◽  
Masaatsu Horikoshi ◽  
Yoshiharu Kawamura

We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the classical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.


1995 ◽  
Vol 241 (2) ◽  
pp. 301-336 ◽  
Author(s):  
A. Nyffeler ◽  
A. Schenk

1988 ◽  
Vol 03 (06) ◽  
pp. 561-569 ◽  
Author(s):  
L.V. ROZHANSKY ◽  
A.A. TSEYTLIN

We show that a part of logarithmic divergences in the closed bosonic string amplitudes on the disc was over-looked in the previous studies. The sum of all logarithmic divergences is found to be in agreement with the “tadpole” divergences in the effective field theory with the “cosmological term” representing the disc correction. This resolves the problem raised recently by Fischler, Klebanov and Susskind.


Author(s):  
Salman Sajad Wani ◽  
Dylan Sutherland ◽  
Behnam Pourhassan ◽  
Mir Faizal ◽  
Hrishikesh Patel

Using T-duality, we will argue that a zero point length exists in the low-energy effective field theory of string theory on compactified extra dimensions. Furthermore, if we neglect all the oscillator modes, this zero point length would modify low quantum mechanical systems. As this zero length is fixed geometrically, it is important to analyze how it modifies purely quantum mechanical effects. Thus, we will analyze its effects on quantum erasers, because they are based on quantum effects like entanglement. It will be observed that the behavior of these quantum erasers gets modified by this zero point length. As the zero point length is fixed by the radius of compactification, we argue that these results demonstrate a deeper connection between geometry and quantum effects.


Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


Sign in / Sign up

Export Citation Format

Share Document