scholarly journals PROPER CURVATURE COLLINEATIONS IN NONSTATIC SPHERICALLY SYMMETRIC SPACE–TIMES

2008 ◽  
Vol 23 (05) ◽  
pp. 749-759 ◽  
Author(s):  
GHULAM SHABBIR ◽  
M. RAMZAN

A study of nonstatic spherically symmetric space–times according to their proper curvature collineations is given by using the rank of the 6×6 Riemann matrix and direct integration techniques. Studying proper curvature collineations in each case of the above space–times it is shown that when the above space–times admit proper curvature collineations, they turn out to be static spherically symmetric and form an infinite dimensional vector space. In the nonstatic cases curvature collineations are just Killing vector fields.

2007 ◽  
Vol 22 (11) ◽  
pp. 807-817 ◽  
Author(s):  
GHULAM SHABBIR ◽  
ABU BAKAR MEHMOOD

A study of Kantowski–Sachs and Bianchi type III spacetimes according to their proper curvature collineations is given by using the rank of the 6×6 Riemann matrix and direct integration techniques. It is shown that when the above spacetimes admit proper curvature collineations, they form an infinite dimensional vector space.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050149 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
Shabeela Malik ◽  
Muhammad Ramzan

The aim of this paper is to investigate the conformal vector fields (CVFs) for some vacuum classes of static spherically symmetric space-times in [Formula: see text] gravity. First, we have explored the space-times by solving the Einstein field equations in [Formula: see text] gravity. These solutions have been obtained by imposing various conditions on the space-time components and selecting separable form of the bivariate function [Formula: see text]. Second, we find the CVFs of the obtained space-times via direct integration approach. The overall study reveals that there exist 17 cases. From these 17 cases, the space-times in five cases admit proper CVFs whereas in rest of the 12 cases, CVFs become Killing vector fields (KVFs). We have also calculated the torsion scalar and boundary term for each of the obtained solutions.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850105 ◽  
Author(s):  
Ghulam Shabbir ◽  
M. Ramzan ◽  
A. H. Kara

We considered the most general form of non-static cylindrically symmetric space-times for studying proper curvature symmetry by using the rank of the [Formula: see text] Riemann matrix and direct integration techniques. Studying proper curvature symmetry in each case of the above space-times, we show that when the above space-times admit proper curvature symmetry, they form an infinite dimensional vector space. It is important to note that here we also find the case when the rank of the [Formula: see text] Riemann matrix is one and no covariantly constant vector fields exist.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850193 ◽  
Author(s):  
Ghulam Shabbir ◽  
Muhammad Ramzan ◽  
Fiaz Hussain ◽  
S. Jamal

A classification of static spherically symmetric space-times in [Formula: see text] theory of gravity according to their conformal vector fields (CVFs) is presented. For this analysis, a direct integration technique is used. This study reveals that for static spherically symmetric space-times in [Formula: see text] theory of gravity, CVFs are just Killing vector fields (KVFs) or homothetic vector fields (HVFs). For this classification, six cases have been discussed out of which there exists only one case for which CVFs become HVFs while in the rest of the cases CVFs become KVFs.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


2006 ◽  
Vol 21 (23) ◽  
pp. 1795-1802 ◽  
Author(s):  
GHULAM SHABBIR ◽  
M. AMER QURESHI

A study of proper projective symmetry in the Schwarzschild metric is given by using algebric and direct integration techniques. It is shown that projective collineations admitted by the above metric are the Killing vector fields.


2020 ◽  
Vol 22 (4) ◽  
pp. 223-226
Author(s):  
M.M. Khashaev

Four parameter group of transformations containing rotations and time translations is consi[1]dered due to spherical symmetry and stationarity of the space-time metric. It is found that there exists such a quartet of Killing vector fields which constitute the Lie algebra of the transforma[1]tion group and in which space-like vectors are not orthogonal to the time-like one. The metric corresponding to the Lie algebra of Killing vectors is composed. It is shown that the metric is non-static.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050232
Author(s):  
Muhammad Amer Qureshi ◽  
Ghulam Shabbir ◽  
K. S. Mahomed ◽  
Taha Aziz

We study proper teleparallel conformal vector fields in spherically symmetric static spacetimes. The main objective of this paper is to present the classification for the above-mentioned spacetimes. The problem has been examined by two methods: direct integration technique and diagonal tetrads. We show that the spherically symmetric static spacetimes do not admit proper teleparallel conformal vector field, so are actually the teleparallel killing vector fields.


Sign in / Sign up

Export Citation Format

Share Document