PROPER PROJECTIVE SYMMETRY IN THE SCHWARZSCHILD METRIC

2006 ◽  
Vol 21 (23) ◽  
pp. 1795-1802 ◽  
Author(s):  
GHULAM SHABBIR ◽  
M. AMER QURESHI

A study of proper projective symmetry in the Schwarzschild metric is given by using algebric and direct integration techniques. It is shown that projective collineations admitted by the above metric are the Killing vector fields.

2019 ◽  
Vol 16 (11) ◽  
pp. 1950180 ◽  
Author(s):  
I. P. Lobo ◽  
G. G. Carvalho

Motivated by the hindrance of defining metric tensors compatible with the underlying spinor structure, other than the ones obtained via a conformal transformation, we study how some geometric objects are affected by the action of a disformal transformation in the closest scenario possible: the disformal transformation in the direction of a null-like vector field. Subsequently, we analyze symmetry properties such as mutual geodesics and mutual Killing vectors, generalized Weyl transformations that leave the disformal relation invariant, and introduce the concept of disformal Killing vector fields. In most cases, we use the Schwarzschild metric, in the Kerr–Schild formulation, to verify our calculations and results. We also revisit the disformal operator using a Newman–Penrose basis to show that, in the null-like case, this operator is not diagonalizable.


2008 ◽  
Vol 23 (05) ◽  
pp. 749-759 ◽  
Author(s):  
GHULAM SHABBIR ◽  
M. RAMZAN

A study of nonstatic spherically symmetric space–times according to their proper curvature collineations is given by using the rank of the 6×6 Riemann matrix and direct integration techniques. Studying proper curvature collineations in each case of the above space–times it is shown that when the above space–times admit proper curvature collineations, they turn out to be static spherically symmetric and form an infinite dimensional vector space. In the nonstatic cases curvature collineations are just Killing vector fields.


2018 ◽  
Vol 33 (13) ◽  
pp. 1850073 ◽  
Author(s):  
Ghulam Shabbir ◽  
K. S. Mahomed ◽  
F. M. Mahomed ◽  
R. J. Moitsheki

In this paper, we investigate proper projective vector fields of locally rotationally symmetric (LRS) Bianchi type V spacetimes using direct integration and algebraic techniques. Despite the non-degeneracy in the Riemann tensor eigenvalues, we classify proper Bianchi type V spacetimes and show that the above spacetimes do not admit proper projective vector fields. Here, in all the cases projective vector fields are Killing vector fields.


2019 ◽  
Vol 34 (24) ◽  
pp. 1950189 ◽  
Author(s):  
M. Jamil Khan ◽  
Ghulam Shabbir ◽  
M. Ramzan

The purpose of this paper is to find proper homothetic vector fields in plane symmetric perfect fluid static spacetimes in the [Formula: see text] theory of gravity by using direct integration technique. In this study, there exist six cases. Studying each case in detail, we found that in four cases proper homothetic vector fields exist while in the other two cases homothetic vector fields become Killing vector fields.


2010 ◽  
Vol 25 (01) ◽  
pp. 55-61 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify Bianchi type I spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields is 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 10 Killing vector fields, the spacetime becomes Minkowski and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in the general relativity.


2010 ◽  
Vol 25 (20) ◽  
pp. 1733-1740 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

The aim of this paper is to classify Bianchi type II spacetimes according to their teleparallel Killing vector fields using the direct integration technique. Studying teleparallel Killing vector fields in the above spacetimes, it turns out that the dimensions of the teleparallel Killing vector fields are 4, 5 or 7. A brief comparison between teleparallel and general relativity Killing vector fields are given. It is shown that for the above spacetimes in the presence of torsion we get more conservation laws which are different from the theory of general relativity.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


Sign in / Sign up

Export Citation Format

Share Document