RESCATTERING EFFECTS IN DEUTERON-PROTON ELASTIC SCATTERING AT INTERMEDIATE ENERGIES

2011 ◽  
Vol 26 (03n04) ◽  
pp. 728-730 ◽  
Author(s):  
NADEZHDA B. LADYGINA

The deuteron-proton elastic scattering is considered at the deuteron energies from 500 up to 2000 MeV. The multiple-scattering-expansion technique is applied to evaluate the reaction amplitude. The one-nucleon-exchange, single scattering and double scattering contributions are taken into account. Also, some relativistic effects are included into consideration. The obtained results are compared with the experimental data both for the differential cross section and polarization observables.

Author(s):  
Nadezhda Ladygina

We study deuteron- proton elastic scattering in the deuteron energy range between 500 MeV and 2 GeV at the cms scattering angle \theta^*\ge 140^\circθ*≥140∘. The reaction is considered in the relativistic multiple scattering expansion framework. The four reaction mechanisms are included into consideration: one-nucleon exchange, single scattering, double scattering, and the term corresponding to the delta excitation in the intermediate state.The model is applied to describe the angular dependence of the differential cross section at the deuteron energies of between 880 and 1300 MeV. Also the energy dependence of the differential cross section and polarisation observables such as tensor analyzing power T_{20}T20 and polarization transfer from the deuteron to proton \varkappa𝜘 are considered at the scattering angle equal to 180^\circ∘. Contributions of the different reaction mechanisms into the reaction amplitude are demonstrated in comparison with the existing experimental data.


2013 ◽  
Vol 101 (2) ◽  
pp. 21002 ◽  
Author(s):  
◽  
G. Antchev ◽  
P. Aspell ◽  
I. Atanassov ◽  
V. Avati ◽  
...  

2000 ◽  
Vol 53 (6) ◽  
pp. 767 ◽  
Author(s):  
P. K. Deb ◽  
K. Amos ◽  
S. Karataglidis

An extensive survey and analysis of cross-section and analysing power data from proton elastic scattering at energies 25 to 40 MeV is presented. The data are compared with predictions obtained from a full folding specification of the proton–nucleus optical potentials. Isotope and energy variation of the data is explained.


Author(s):  
G. Antchev ◽  
P. Aspell ◽  
I. Atanassov ◽  
V. Avati ◽  
J. Baechler ◽  
...  

Abstract The TOTEM experiment at the LHC has performed the first measurement at $$\sqrt{s} = 13\,\mathrm{TeV}$$s=13TeV of the $$\rho $$ρ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $$t=0$$t=0, obtaining the following results: $$\rho = 0.09 \pm 0.01$$ρ=0.09±0.01 and $$\rho = 0.10 \pm 0.01$$ρ=0.10±0.01, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $$\rho $$ρ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than $$10\,\mathrm{TeV}$$10TeV (from 2.76 to $$13\,\mathrm{TeV}$$13TeV), has implied the exclusion of all the models classified and published by COMPETE. The $$\rho $$ρ results obtained by TOTEM are compatible with the predictions, from other theoretical models both in the Regge-like framework and in the QCD framework, of a crossing-odd colourless 3-gluon compound state exchange in the t-channel of the proton–proton elastic scattering. On the contrary, if shown that the crossing-odd 3-gluon compound state t-channel exchange is not of importance for the description of elastic scattering, the $$\rho $$ρ value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-|t| reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton–proton cross-section measurement $$\sigma _{\mathrm{tot}} = (110.3 \pm 3.5)\,\mathrm{mb}$$σtot=(110.3±3.5)mb, completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $$\sigma _{\mathrm{tot}} = (110.5 \pm 2.4)\,\mathrm{mb}$$σtot=(110.5±2.4)mb.


Sign in / Sign up

Export Citation Format

Share Document