X-ray laser wakefield acceleration in a nanotube

2019 ◽  
Vol 34 (34) ◽  
pp. 1943011
Author(s):  
Sahel Hakimi ◽  
Xiaomei Zhang ◽  
Calvin Lau ◽  
Peter Taborek ◽  
Franklin Dollar ◽  
...  

Plasma-based accelerator technology enables compact particle accelerators. In Laser Wakefield Acceleration, with an ultrafast high-intensity optical laser driver, energy gain of electrons is greater if the electron density is reduced. This is because the energy gain of electrons is proportional to the ratio of laser’s critical density to electron density. However, an alternative path for higher energy electrons is increasing the critical density via going to shorter wavelengths. With the advent of Thin Film Compression, we now see a path to a single cycle coherent X-ray beam. Using this X-ray pulse allows us to increase the plasma density to solid density nanotube (carbon or porous alumina) regime and still be under-dense for a Laser Wakefield Acceleration technique. We will discuss some implications of this below.

2019 ◽  
Vol 34 (34) ◽  
pp. 1943012 ◽  
Author(s):  
Ronghao Hu ◽  
Zheng Gong ◽  
Jinqing Yu ◽  
Yinren Shou ◽  
Meng Lv ◽  
...  

The emerging intense attosecond X-ray lasers can extend the Laser Wakefield Acceleration mechanism to higher plasma densities in which the acceleration gradients are greatly enhanced. Here we present simulation results of high quality electron acceleration driven by intense attosecond X-ray laser pulses in liquid methane. Ultrahigh brightness electron beams can be generated with 5-dimensional beam brightness over [Formula: see text]. The pulse duration of the electron bunch can be shorter than 20 as. Such unique electron sources can benefit research areas requiring crucial spatial and temporal resolutions.


2019 ◽  
Vol 90 (3) ◽  
pp. 033503 ◽  
Author(s):  
P. M. King ◽  
N. Lemos ◽  
J. L. Shaw ◽  
A. L. Milder ◽  
K. A. Marsh ◽  
...  

2012 ◽  
Author(s):  
S. Fourmaux ◽  
S. Corde ◽  
K. Ta Phuoc ◽  
P. Lassonde ◽  
S. Payeur ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 216
Author(s):  
Bradley Scott Nicks ◽  
Ernesto Barraza-Valdez ◽  
Sahel Hakimi ◽  
Kyle Chesnut ◽  
Genevieve DeGrandchamp ◽  
...  

The electron dynamics of laser wakefield acceleration (LWFA) is examined in the high-density regime using particle-in-cell simulations. These simulations model the electron source as a target of carbon nanotubes. Carbon nanotubes readily allow access to near-critical densities and may have other advantageous properties for potential medical applications of electron acceleration. In the near-critical density regime, electrons are accelerated by the ponderomotive force followed by the electron sheath formation, resulting in a flow of bulk electrons. This behavior represents a qualitatively distinct regime from that of low-density LWFA. A quantitative entropy index for differentiating these regimes is proposed. The dependence of accelerated electron energy on laser amplitude is also examined. For the majority of this study, the laser propagates along the axis of the target of carbon nanotubes in a 1D geometry. After the fundamental high-density physics is established, an alternative, 2D scheme of laser acceleration of electrons using carbon nanotubes is considered.


Sign in / Sign up

Export Citation Format

Share Document