Geometrical particles and Legendrian dualities related to null curves

2020 ◽  
Vol 35 (09) ◽  
pp. 2050051
Author(s):  
Chunxiao Wang ◽  
Qingxin Zhou ◽  
Zhigang Wang

In this paper, we investigate the special properties of geometrical particles with null paths in de Sitter 3-space–time, new Frenet equations and an important invariant associated with null paths are presented. By means of unfolding theory, the local topological structure of the lightlike dual surfaces is revealed. It is found that the lightlike dual surface has some singularities whose types can be determined by the invariant. Based on the theory of Legendrian dualities on pseudospheres and the theory of contact manifolds, it is shown that there exists the [Formula: see text]-dual relationship between the lightlike transversal trajectory of the particle and the lightlike dual surface. In addition, an interesting and important fact mentioned is that the contact of lightlike transversal trajectory with lightcone quadric and the contact of lightlike transversal trajectory with null hyperplane have the same order when they are related to the same type of singularities of the lightlike dual surface.

Author(s):  
Xue Song ◽  
Donghe Pei

In this paper, we confine the trajectory of geometrical particles to the de Sitter three-dimensional space–time, we model geometrical particles as spacelike tachyons. Using the Legendrian duality theory of pseudo-spheres and contact manifolds theory we establish the dual relationships between spacelike moving trajectory of geometrical particles and future nullcone hypersurfaces.


2021 ◽  
Vol 36 (02) ◽  
pp. 2150011
Author(s):  
Nabil Mehdaoui ◽  
Lamine Khodja ◽  
Salah Haouat

In this work, we address the process of pair creation of scalar particles in [Formula: see text] de Sitter space–time in presence of a constant electromagnetic field by applying the noncommutativity on the scalar field up to first-order in [Formula: see text]. We calculate the density of particles created in the vacuum by the mean of the Bogoliubov transformations. In contrast to a previous result, we show that noncommutativity contributes to the pair creation process. We find that the noncommutativity plays the same role of chemical potential and gives an important interest for studies at high energies.


1978 ◽  
Vol 18 (10) ◽  
pp. 3565-3576 ◽  
Author(s):  
S. J. Avis ◽  
C. J. Isham ◽  
D. Storey

2015 ◽  
Vol 30 (22) ◽  
pp. 1550133 ◽  
Author(s):  
Eduardo Guendelman ◽  
Emil Nissimov ◽  
Svetlana Pacheva

We propose a new class of gravity-matter theories, describing [Formula: see text] gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space–time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root [Formula: see text] of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space–time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term [Formula: see text], with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” [Formula: see text]. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) [Formula: see text] and a nonzero gauge field vacuum [Formula: see text], which corresponds to a charge confining phase; (ii) [Formula: see text] (“kinetic vacuum”) and ordinary gauge field vacuum [Formula: see text] which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) [Formula: see text] (“kinetic vacuum”) and a nonzero gauge field vacuum [Formula: see text], which again corresponds to a charge confining phase. In all three cases, the space–time metric is de Sitter or Schwarzschild–de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner–Nordström–de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.


2014 ◽  
Vol 92 (6) ◽  
pp. 484-487 ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Jafar Khodagholizadeh

Various approaches to quantum gravity, such as string theory, predict a minimal measurable length and a modification of the Heisenberg uncertainty principle near the Plank scale, known as the generalized uncertainty principle (GUP). Here we study the effects of GUP, which preserves the rotational symmetry of the space–time, on the Kepler problem. By comparing the value of the perihelion shift of the planet Mercury in Schwarzschild – de Sitter space–time with the resultant value of GUP, we find a relation between the minimal measurable length and the cosmological constant of the space–time. Now, if the cosmological constant varies with time, we have a variable minimal length in the space–time. Finally, we investigate the effects of GUP on the stability of circular orbits.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 66 ◽  
Author(s):  
Jean-Pierre Gazeau

An explanation of the origin of dark matter is suggested in this work. The argument is based on symmetry considerations about the concept of mass. In Wigner’s view, the rest mass and the spin of a free elementary particle in flat space-time are the two invariants that characterize the associated unitary irreducible representation of the Poincaré group. The Poincaré group has two and only two deformations with maximal symmetry. They describe respectively the de Sitter (dS) and anti-de Sitter (AdS) kinematic symmetries. Analogously to their shared flat space-time limit, two invariants, spin and energy scale for de Sitter and rest energy for anti-de Sitter, characterize the unitary irreducible representation associated with dS and AdS elementary systems, respectively. While the dS energy scale is a simple deformation of the Poincaré rest energy and so has a purely mass nature, AdS rest energy is the sum of a purely mass component and a kind of zero-point energy derived from the curvature. An analysis based on recent estimates on the chemical freeze-out temperature marking in Early Universe the phase transition quark–gluon plasma epoch to the hadron epoch supports the guess that dark matter energy might originate from an effective AdS curvature energy.


Sign in / Sign up

Export Citation Format

Share Document