A de-Sitter weak gravity conjecture

Author(s):  
Ignatios Antoniadis ◽  
Karim Benakli

The study of de-Sitter Reissner–Nordstrøm black holes allows us to uncover a Weak Gravity Conjecture in de-Sitter space. It states that for a given mass [Formula: see text] there should be a state with a charge [Formula: see text] bigger than a minimal value [Formula: see text], depending on the mass and the de-Sitter radius [Formula: see text], in Planck units. This reproduces the well-known flat space–time result [Formula: see text] in the large radius limit (large [Formula: see text]). In the highly curved de-Sitter space, ([Formula: see text]) [Formula: see text] behaves as [Formula: see text]. Finally, we discuss the case of backgrounds from gauged R-symmetry in [Formula: see text] supergravity. This paper is based on [I. Antoniadis and K. Benakli, Fortsch. Phys. 68, 2000054 (2020), arXiv:2006.12512 [hep-th]].

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Brice Bastian ◽  
Thomas W. Grimm ◽  
Damian van de Heisteeg

Abstract We study the charge-to-mass ratios of BPS states in four-dimensional $$ \mathcal{N} $$ N = 2 supergravities arising from Calabi-Yau threefold compactifications of Type IIB string theory. We present a formula for the asymptotic charge-to-mass ratio valid for all limits in complex structure moduli space. This is achieved by using the sl(2)-structure that emerges in any such limit as described by asymptotic Hodge theory. The asymptotic charge-to-mass formula applies for sl(2)-elementary states that couple to the graviphoton asymptotically. Using this formula, we determine the radii of the ellipsoid that forms the extremality region of electric BPS black holes, which provides us with a general asymptotic bound on the charge-to-mass ratio for these theories. Finally, we comment on how these bounds for the Weak Gravity Conjecture relate to their counterparts in the asymptotic de Sitter Conjecture and Swampland Distance Conjecture.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yang Zhang ◽  
Wen-qi Wang ◽  
Yu-bo Ma ◽  
Jun Wang

In this paper, the effect of the space-time dimension on effective thermodynamic quantities in (n+2)-dimensional Reissner-Nordstrom-de Sitter space has been studied. Based on derived effective thermodynamic quantities, conditions for the phase transition are obtained. The result shows that the accelerating cosmic expansion can be attained by the entropy force arisen from the interaction between horizons of black holes and our universe, which provides a possible way to explain the physical mechanism for the accelerating cosmic expansion.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650007 ◽  
Author(s):  
Leszek M. Sokołowski ◽  
Zdzisław A. Golda

In this paper, we refine and analytically prove an old proposition due to Calabi and Markus on the shape of timelike geodesics of anti-de Sitter space in the ambient flat space. We prove that each timelike geodesic forms in the ambient space a circle of the radius determined by [Formula: see text], lying on a Euclidean two-plane. Then, we outline an alternative proof for [Formula: see text]. We also make a comment on the shape of timelike geodesics in de Sitter space.


1998 ◽  
Vol 15 (11) ◽  
pp. 3575-3598 ◽  
Author(s):  
Máximo Bañados ◽  
Andrés Gomberoff ◽  
Cristián Martínez

2019 ◽  
Vol 28 (03) ◽  
pp. 1950049 ◽  
Author(s):  
Kai Lin ◽  
Fei-Hung Ho ◽  
Wei-Liang Qian

In this work, we investigate the [Formula: see text]-dimensional charged static black hole solutions in the Einstein-æther theory. By taking the metric parameter [Formula: see text] to be [Formula: see text], and [Formula: see text], we obtain the spherical, planar, and hyperbolic spacetimes, respectively. Three choices of the cosmological constant, [Formula: see text], [Formula: see text] and [Formula: see text], are investigated, which correspond to asymptotically de Sitter, flat and anti-de Sitter spacetimes. The obtained results show the existence of the universal horizon in higher dimensional cases which may trap any particle with arbitrarily large velocity. We analyze the horizon and the surface gravity of four- and five-dimensional black holes, and the relations between the above quantities and the electrical charge. It is shown that when the aether coefficient [Formula: see text] or the charge [Formula: see text] increases, the outer Killing horizon shrinks and approaches the universal horizon. Furthermore, the surface gravity decreases and approaches zero in the limit [Formula: see text] or [Formula: see text], where [Formula: see text] is the extreme charge. The main features of the horizon and surface gravity are found to be similar to those in [Formula: see text] case, but subtle differences are also observed.


Author(s):  
Nilofar Rahman ◽  
Masum Murshid ◽  
Mehedi Kalam

A thin shell wormhole is constructed utilizing the cut and paste technique from ABGB–de Sitter black hole derived by Matyjasek et al. The surface stress localized at the wormhole throat is determined using Darmois–Israel formalism. We examine the attractive and repulsive nature of the thin shell wormhole on which cosmological constant [Formula: see text] has a significant effect. For the fixed values of charge [Formula: see text] and mass [Formula: see text], the attractiveness of the wormhole decreases with increasing [Formula: see text]. We calculate the total amount of exotic matter in the shell, which is not much affected by [Formula: see text]. For the construction of the wormhole in de Sitter universe, the regular black holes have to be heavily charged with a light mass to minimize the amount of required exotic matter. The stability of the wormhole solution is explored by considering a general equation of state in the form of linear perturbation. The stability regions are shown in the figures.


Sign in / Sign up

Export Citation Format

Share Document