THE MODELS OF TWO-DIMENSIONAL CONFORMAL QUANTUM FIELD THEORY WITH Zn SYMMETRY

1988 ◽  
Vol 03 (02) ◽  
pp. 507-520 ◽  
Author(s):  
V.A. FATEEV ◽  
S.L. LYKYANOV

An infinite set of conformally invariant solutions of the two-dimensional quantum field theory, possessing a global symmetry Zn is constructed. These solutions can describe the critical behavior of Zn symmetric statistical systems.

2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2010 ◽  
Vol 25 (11) ◽  
pp. 2355-2363 ◽  
Author(s):  
L. H. FORD

Quantum field theory allows for the suppression of vacuum fluctuations, leading to sub-vacuum phenomena. One of these is the appearance of local negative energy density. Selected aspects of negative energy will be reviewed, including the quantum inequalities which limit its magnitude and duration. However, these inequalities allow the possibility that negative energy and related effects might be observable. Some recent proposals for experiments to search for sub-vacuum phenomena will be discussed. Fluctuations of the energy density around its mean value will also be considered, and some recent results on a probability distribution for the energy density in two dimensional spacetime are summarized.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2020 ◽  
Vol 61 (6) ◽  
pp. 063510
Author(s):  
Sebastian Novak ◽  
Ingo Runkel

2019 ◽  
Vol 107 (3) ◽  
pp. 392-411 ◽  
Author(s):  
YAJUN ZHOU

Let $p_{n}(x)=\int _{0}^{\infty }J_{0}(xt)[J_{0}(t)]^{n}xt\,dt$ be Kluyver’s probability density for $n$-step uniform random walks in the Euclidean plane. Through connection to a similar problem in two-dimensional quantum field theory, we evaluate the third-order derivative $p_{5}^{\prime \prime \prime }(0^{+})$ in closed form, thereby giving a new proof for a conjecture of J. M. Borwein. By further analogies to Feynman diagrams in quantum field theory, we demonstrate that $p_{n}(x),0\leq x\leq 1$ admits a uniformly convergent Maclaurin expansion for all odd integers $n\geq 5$, thus settling another conjecture of Borwein.


1978 ◽  
Vol 18 (12) ◽  
pp. 4435-4459 ◽  
Author(s):  
T. S. Bunch ◽  
S. M. Christensen ◽  
S. A. Fulling

Sign in / Sign up

Export Citation Format

Share Document