scholarly journals TRANSITION AMPLITUDE IN (2+1)-DIMENSIONAL CHERN-SIMONS GRAVITY ON A TORUS

1994 ◽  
Vol 09 (27) ◽  
pp. 4727-4745 ◽  
Author(s):  
KIYOSHI EZAWA

In the framework of the Chern-Simons gravity proposed by Witten, a transition amplitude of a torus universe in (2+1)-dimensional quantum gravity is computed. This amplitude has the desired properties as a probability amplitude of the quantum mechanics of a torus universe, namely, it has a peak on the “classical orbit” and it satisfies the Schrödinger equation of the (2+1)-dimensional gravity. The discussion is given that the classical orbit dominance of the amplitude is not altered by taking the modular invariance into account and that this amplitude can serve as a covariant transition amplitude in a particular sense. A set of the modular-covariant wave functions is also constructed and they are shown to be equivalent to the weight-½ Maass forms.

Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


2003 ◽  
Vol 20 (6) ◽  
pp. 1031-1061 ◽  
Author(s):  
Abhay Ashtekar ◽  
Stephen Fairhurst ◽  
Joshua L Willis

1993 ◽  
Vol 08 (04) ◽  
pp. 653-682 ◽  
Author(s):  
G. BIMONTE ◽  
K.S. GUPTA ◽  
A. STERN

We apply elementary canonical methods for the quantization of 2+1 dimensional gravity, where the dynamics is given by E. Witten’s ISO(2, 1) Chern-Simons action. As in a previous work, our approach does not involve choice of gauge or clever manipulations of functional integrals. Instead, we just require the Gauss law constraint for gravity to be first class and also to be everywhere differentiable. When the spatial slice is a disc, the gravitational fields can either be unconstrained or constrained at the boundary of the disc. The unconstrained fields correspond to edge currents which carry a representation of the ISO(2, 1) Kac-Moody algebra. Unitary representations for such an algebra have been found using the method of induced representations. In the case of constrained fields, we can classify all possible boundary conditions. For several different boundary conditions, the field content of the theory reduces precisely to that of 1+1 dimensional gravity theories. We extend the above formalism to include sources. The sources take into account self-interactions. This is done by punching holes in the disc, and erecting an ISO(2, 1) Kac–Moody algebra on the boundary of each hole. If the hole is originally sourceless, a source can be created via the action of a vertex operator V. We give an explicit expression for V. We shall show that when acting on the vacuum state, it creates particles with a discrete mass spectrum. The lowest mass particle induces a cylindrical space-time geometry, while higher mass particles give an n fold covering of the cylinder. The vertex operator therefore creates cylindrical space-time geometries from the vacuum.


2020 ◽  
Author(s):  
Daniel A. Fleisch

Quantum mechanics is a hugely important topic in science and engineering, but many students struggle to understand the abstract mathematical techniques used to solve the Schrödinger equation and to analyze the resulting wave functions. Retaining the popular approach used in Fleisch's other Student's Guides, this friendly resource uses plain language to provide detailed explanations of the fundamental concepts and mathematical techniques underlying the Schrödinger equation in quantum mechanics. It addresses in a clear and intuitive way the problems students find most troublesome. Each chapter includes several homework problems with fully worked solutions. A companion website hosts additional resources, including a helpful glossary, Matlab code for creating key simulations, revision quizzes and a series of videos in which the author explains the most important concepts from each section of the book.


1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


1997 ◽  
Vol 12 (20) ◽  
pp. 1455-1463 ◽  
Author(s):  
G. S. Djordjević ◽  
B. Dragovich

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude [Formula: see text] for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document