THE BOUND STATE EQUATION FOR TWO GLUONS AND ITS SOLUTION

1999 ◽  
Vol 14 (13) ◽  
pp. 2117-2132
Author(s):  
J. Y. CUI ◽  
J. M. WU

We derive the bound state equation for two gluons in relativistic quantum field theory, i.e. the Bethe–Salpeter (BS) equation for two gluons. To solve it, we choose the kernel as the sum of a one-gluon exchange potential, a contact interaction and a linear confining potential. Under instantaneous approximation, this BS equation is solved numerically. The spectrum and the BS wave function of the glueballs are obtained in this framework. The numerical results are in agreement with that of recent lattice calculation.

1974 ◽  
Vol 52 (20) ◽  
pp. 1988-1994 ◽  
Author(s):  
Roger Palmer ◽  
Yasushi Takahashi

We examined the problem of the appearance of negative norm states in multimass models. It is shown explicitly how the bound state with the same quantum numbers as the elementary meson, can acquire the positive norm. It is inferred from our argument that the multimass system of dynamical origin can be quantized without the negative norm, contrary to the multimass system of kinematical origin.


2020 ◽  
Vol 241 ◽  
pp. 02008
Author(s):  
Craig D. Roberts

One of the greatest challenges within the Standard Model is to discover the source of visible mass. Indeed, this is the focus of a “Millennium Problem”, posed by the Clay Mathematics Institute. The answer is hidden within quantum chromodynamics (QCD); and it is probable that revealing the origin of mass will also explain the nature of confinement. In connection with these issues, this perspective will describe insights that have recently been drawn using contemporary methods for solving the continuum bound-state problem in relativistic quantum field theory and how they have been informed and enabled by modern experiments on nucleon-resonance electroproduction.


2006 ◽  
Vol 21 (21) ◽  
pp. 1657-1673 ◽  
Author(s):  
ZHI-FENG LI ◽  
WOLFGANG LUCHA ◽  
FRANZ F. SCHÖBERL

Recently an instantaneous approximation to the Bethe–Salpeter formalism for the analysis of bound states in quantum field theory has been proposed which retains, in contrast to the Salpeter equation, as far as possible the exact propagators of the bound-state constituents, extracted nonperturbatively from Dyson–Schwinger equations or lattice gauge theory. The implications of this improvement for the solutions of this bound-state equation, i.e. the spectrum of the mass eigenvalues of its bound states and the corresponding wave functions, when considering the quark propagators arising in quantum chromodynamics are explored.


1997 ◽  
Vol 12 (32) ◽  
pp. 2399-2406 ◽  
Author(s):  
Kunio Yamamoto

It is pointed out that, for any model with bound state, contrary to the case of nonrelativistic quantum mechanics, perturbation expansion based on Feynman rules in relativistic quantum field theory is not asymptotic of physical amplitude in which the effects of bound state are considered.


1998 ◽  
Vol 13 (02) ◽  
pp. 87-89
Author(s):  
KUNIO YAMAMOTO

In the previous paper, it has been pointed out that, for any model with real bound state in relativistic quantum field theory, Feynman rules do not give the physical amplitude in which the effects of real bound state are considered. By investigating this fact, it is found that an important guiding principle indispensable to discuss real bound state problems is unknown. The way to investigate this principle is not within the framework of relativistic quantum field theory.


Sign in / Sign up

Export Citation Format

Share Document