scholarly journals ROBUST SYNCHRONIZATION WITH UNIFORM ULTIMATE BOUND BETWEEN TWO DIFFERENT CHAOTIC SYSTEMS WITH UNCERTAINTIES

2011 ◽  
Vol 25 (16) ◽  
pp. 2217-2227
Author(s):  
JIANPING CAI ◽  
ZHENGZHONG YUAN

Adaptive controllers are designed to synchronize two different chaotic systems with uncertainties, including unknown parameters, internal and external perturbations. Lyapunov stability theory is applied to prove that under some conditions the drive-response systems can achieve synchronization with uniform ultimate bound even though the bounds of uncertainties are not known exactly in advance. The designed controllers contain only feedback terms and partial nonlinear terms of the systems, and they are easy to implement in practice. The Lorenz system and Chen system are chosen as the illustrative example to verify the validity of the proposed method. Simulation results also show that the present control has good robustness against different kinds of disturbances.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


2017 ◽  
Vol 6 (4) ◽  
pp. 1-16 ◽  
Author(s):  
A. Almatroud Othman ◽  
M.S.M. Noorani ◽  
M. Mossa Al-sawalha

Function projective dual synchronization between two pairs of hyperchaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the Lyapunov stability theory, a suitable and effective adaptive control law and parameters update rule for unknown parameters are designed, such that function projective dual synchronization between the hyperchaotic Chen system and the hyperchaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350110
Author(s):  
JIAKUN ZHAO ◽  
YING WU

This work is concerned with the general methods for the function projective synchronization (FPS) of chaotic (or hyperchaotic) systems. The aim is to investigate the FPS of different chaotic (hyper-chaotic) systems with unknown parameters. The adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function by Lyapunov stability theory. The general approach for FPS of Chen hyperchaotic system and Lü system is provided. Numerical simulations are also presented to verify the effectiveness of the proposed scheme.


2009 ◽  
Vol 23 (22) ◽  
pp. 2593-2606 ◽  
Author(s):  
YONGGUANG YU ◽  
HAN-XIONG LI ◽  
JUNZHI YU

This paper investigates the generalized synchronization issue for two different dimensional chaotic systems with unknown parameters. Based on Lyapunov stability theory and adaptive control theory, an adaptive controller is derived to achieve the generalized synchronization whether the dimension of drive system is greater than the one of the response system or not. Meanwhile, corresponding parameter updating laws can be obtained so as to exactly identify uncertain parameters. This technique has been successfully applied to two examples, the generalized synchronization of hyperchaotic Rössler system and chaotic Lorenz system, chaotic Chen system and generalized Lorenz system. Numerical simulations are finally shown to illustrate the effectiveness of the proposed approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. M. El-Dessoky ◽  
M. T. Yassen ◽  
E. Saleh

This work investigates modified function projective synchronization between two different hyperchaotic dynamical systems, namely, hyperchaotic Lorenz system and hyperchaotic Chen system with fully unknown parameters. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between two diffierent hyperchaotic dynamical systems. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450013 ◽  
Author(s):  
PI LI ◽  
XING-YUAN WANG ◽  
NA WEI ◽  
SI-HUI JIANG ◽  
XIU-KUN WANG

This paper further investigates the adaptive full state hybrid projective synchronization (FSHPS) of hyper-chaotic systems — CYQY system with fully unknown parameters and perturbations. Based on the Lyapunov stability theory, adaptive controllers and updating laws of parameters can be designed for achieving the FSHPS of the CYQY hyper-chaotic systems with the same and different structures. Two groups numerical simulations are provided to verify the effectiveness of the proposed scheme.


2011 ◽  
Vol 25 (32) ◽  
pp. 4563-4571 ◽  
Author(s):  
XINGYUAN WANG ◽  
YAQIN WANG

This paper studies the generalized synchronization of hyperchaos systems, and a new method, by which adaptive generalized synchronization of chaotic systems with a kind of linear and nonlinear relationship between the drive and response systems can be achieved, is proposed. This new method has more extensive application scope. Based on the Lyapunov stability theory, the correctness of the proposed scheme is strictly demonstrated. It is also illustrated by applications to hyperchaotic Chen system and hyperchaotic Lorenz system and the simulation results show the effectiveness of the proposed scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiuchun Li ◽  
Jianhua Gu ◽  
Wei Xu

Considering the effects of external perturbations on the state vector and the output of the original system, this paper proposes a new adaptive integral observer method to deal with chaos synchronization between the drive and response systems with unknown parameters. The analysis and proof are given by means of the Lyapunov stability theorem and Barbalat lemma. This approach has fewer constraints because many parameters related to chaotic system can be unknown, as shown in the paper. Numerical simulations are performed in the end and the results show that the proposed method is not only suitable to the representative chaotic systems but also applied to some neural network chaotic systems.


Author(s):  
H. Najafizadegan ◽  
M. Khoeiniha ◽  
H. Zarabadipour

In this paper, we investigate the chaos anti-synchronization between two identical and different chaotic systems with fully unknown parameters via adaptive control. Based on the Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are designed such that the two different chaotic systems can be anti-synchronized asymptotically. Theoretical analysis and numerical simulations are shown to verify the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-An Hu ◽  
Hai-Yan Li ◽  
Chun-Ping Zhang ◽  
Liang Liu

This paper is concerned with the finite-time synchronization problem for two different chaotic systems with parameter uncertainties. Using finite-time control approach and robust control method, an adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. On the basis of Lyapunov stability theory, appropriate adaptive laws are derived to deal with the unknown parameters of the systems. And the convergence of the parameter errors is guaranteed in a finite time. The proposed method can be applied to a variety of chaos systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document