scholarly journals Robust Adaptive Finite-Time Synchronization of Two Different Chaotic Systems with Parameter Uncertainties

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-An Hu ◽  
Hai-Yan Li ◽  
Chun-Ping Zhang ◽  
Liang Liu

This paper is concerned with the finite-time synchronization problem for two different chaotic systems with parameter uncertainties. Using finite-time control approach and robust control method, an adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. On the basis of Lyapunov stability theory, appropriate adaptive laws are derived to deal with the unknown parameters of the systems. And the convergence of the parameter errors is guaranteed in a finite time. The proposed method can be applied to a variety of chaos systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.

Author(s):  
Mohammad Pourmahmood Aghababa

This paper concerns the problem of stabilization of uncertain fractional-order chaotic systems in finite time. On the basis of fractional Lyapunov stability theory, a robust finite-time fractional controller is introduced to control chaos of fractional-order chaotic systems in the presence of system uncertainties. The finite-time stability of the closed-loop system is analytically proved. An estimation of the convergence time is also given. Some numerical simulations are provided to illustrate the usefulness and applicability of the proposed robust finite-time control approach. It is worth noting that the proposed fractional control method is applicable for stabilizing a broad range of uncertain fractional-order nonlinear systems in a given finite time.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 346
Author(s):  
Hao Jia ◽  
Chen Guo ◽  
Lina Zhao ◽  
Zhao Xu

This work uses the sliding mode control method to conduct the finite-time synchronization of chaotic systems. The utilized parameter selection principle differs from conventional methods. The designed controller selects the unknown parameters independently from the system model. These parameters enable tracking and prediction of the additional variables that affect the chaotic motion but are difficult to measure. Consequently, the proposed approach avoids the limitations of selecting the unknown parameters that are challenging to measure or modeling the parameters solely within the relevant system. This paper proposes a novel nonsingular terminal sliding surface and demonstrates its finite-time convergence. Then, the adaptive law of unknown parameters is presented. Next, the adaptive sliding mode controller based on the finite-time control idea is proposed, and its finite-time convergence and stability are discussed. Finally, the paper presents numerical simulations of chaotic systems with either the same or different structures, thus verifying the proposed method’s applicability and effectiveness.


2018 ◽  
Vol 28 (4) ◽  
pp. 613-624
Author(s):  
Qiaoping Li ◽  
Sanyang Liu ◽  
Yonggang Chen

Abstract In this paper, for multiple different chaotic systems with fully unknown parameters, a novel synchronization scheme called ‘modified function projective multi-lag generalized compound synchronization’ is put forward. As an advantage of the new method, not only the addition and subtraction, but also the multiplication of multiple chaotic systems are taken into consideration. This makes the signal hidden channels more abundant and the signal hidden methods more flexible. By virtue of finite-time stability theory and an adaptive control technique, a finite-time adaptive control scheme is established to realize the finite-time synchronization and to properly evaluate the unknown parameters. A detailed theoretical derivation and a specific numerical simulation demonstrate the feasibility and validity of the advanced scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baojie Zhang ◽  
Hongxing Li

Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the effectiveness of the scheme.


2021 ◽  
pp. 2150165
Author(s):  
Chengye Zou ◽  
Xingyuan Wang ◽  
Haifeng Li

The finite time synchronization diffusion of uncertain networks with the switching topology is investigated in this paper. Spatiotemporal chaotic systems as nodes to construct the network, and the topology of network can jump from one construction to another to meet the actual demand. It is not like ordinary synchronization of network, our method can realize synchronization diffusion originated from boundary conditions, and the diffusion step can be determined by Taylor expand. The parameters are identified through proposed scheme against parameter uncertainties of system in practice. Numerical simulations are utilized to demonstrate the correctness and effectiveness of the finite time synchronization diffusion criteria. In the section of analysis and discussion, we have analyzed the impact of synchronization diffusion step and controller on the synchronization diffusion time.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350110
Author(s):  
JIAKUN ZHAO ◽  
YING WU

This work is concerned with the general methods for the function projective synchronization (FPS) of chaotic (or hyperchaotic) systems. The aim is to investigate the FPS of different chaotic (hyper-chaotic) systems with unknown parameters. The adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function by Lyapunov stability theory. The general approach for FPS of Chen hyperchaotic system and Lü system is provided. Numerical simulations are also presented to verify the effectiveness of the proposed scheme.


2012 ◽  
Vol 26 (16) ◽  
pp. 1250121
Author(s):  
XINGYUAN WANG ◽  
LULU WANG ◽  
DA LIN

In this paper, a generalized (lag, anticipated and complete) projective synchronization for a general class of chaotic systems is defined. A systematic, powerful and concrete scheme is developed to investigate the generalized (lag, anticipated and complete) projective synchronization between the drive system and response system based on the adaptive control method and feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes. In addition, the scheme can also be extended to research generalized (lag, anticipated and complete) projective synchronization between nonidentical discrete-time chaotic systems.


Author(s):  
Mohammad Pourmahmood Aghababa ◽  
Hasan Pourmahmood Aghababa

Due to its useful applications in real world processes, synchronization of chaotic systems has attracted the attention of many researchers of mathematics, physics and engineering sciences. In practical situations, many chaotic systems are inevitably disturbed by model uncertainties and external disturbances. Furthermore, in practice, it is hard to determine the precise values of the chaotic systems’ parameters in advance. Besides, from a practical point of view, it is more desirable to achieve synchronization in a given finite time. In this paper, we investigate the problem of finite-time chaos synchronization between two different chaotic systems in the presence of model uncertainties, external disturbances and unknown parameters. Both autonomous and non-autonomous chaotic systems are taken into account. To tackle the unknown parameters, appropriate adaptation laws are proposed. Using the adaptation laws and finite-time control technique, an adaptive robust finite-time controller is designed to guarantee that the state trajectories slave system converge to the state trajectories of the master system in a given finite time. Some numerical simulations are presented to verify the robustness and usefulness of the proposed finite-time control technique.


Sign in / Sign up

Export Citation Format

Share Document