SYNCHRONIZATION BETWEEN TWO DIFFERENT HYPERCHAOTIC SYSTEMS WITH UNCERTAIN PARAMETERS

2013 ◽  
Vol 27 (13) ◽  
pp. 1350044
Author(s):  
XING-YUAN WANG ◽  
YU-HONG YANG ◽  
MING-KU FENG

This paper studies the problem of chaos synchronization between two different hyperchaotic systems with uncertain parameters. Based on the Lyapunov stability theory, we obtain the sufficient condition of synchronization between two different hyperchaotic systems with uncertain parameters. A new adaptive controller with parameter update laws is designed to synchronize these chaotic systems. We proved it in theory with an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Rössler system. Numerical results verified the validation of the proposed scheme.

2013 ◽  
Vol 401-403 ◽  
pp. 1657-1660
Author(s):  
Bin Zhou ◽  
Xiang Wang ◽  
Yu Gao ◽  
Shao Cheng Qu

An adaptive controller with adaptive rate is presented to synchronize two chaos systems and to apply to secure communication. Based on Lyapunov stability theory, a sufficient condition and adaptive control parameters are obtained. Finally, the simulation with synchronization and secure communication is given to show the effectiveness of the proposed method. Keywords: adaptive; synchronization; observer; controller.


2020 ◽  
Vol 31 (10) ◽  
pp. 2050137
Author(s):  
Xuefei Chen ◽  
Bingyue Liu ◽  
Huizhao Liu

The exponential synchronization and anti-synchronization of nonautonomous chaotic systems with uncertain parameters are studied. The adaptive controller is designed and analytic expression of the controller and the adaptive laws of parameters are given. Based on the Lyapunov stability theory, the exponential stability of the error system is proved. Numerical simulations of two nonautonomous chaotic systems with uncertain parameters are presented to illustrate the ability and effectiveness of the proposed method.


2009 ◽  
Vol 20 (05) ◽  
pp. 789-797
Author(s):  
YONG-GUANG YU ◽  
HAN-XIONG LI ◽  
JUN-ZHI YU

This paper mainly investigated a hybrid function projective synchronization of two different chaotic systems. Based on the Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed. This technique is applied to achieve the synchronization between Lorenz and Rössler chaotic systems, and the synchronization of hyperchaotic Rössler and Chen systems. The numerical simulation results illustrate the effectiveness and feasibility of the proposed scheme.


2013 ◽  
Vol 27 (32) ◽  
pp. 1350197
Author(s):  
XING-YUAN WANG ◽  
SI-HUI JIANG ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve adaptive synchronization between a novel hyperchaotic system and the hyperchaotic Chen system with fully unknown parameters. Based on the Lyapunov stability theory, an adaptive controller and parameter updating law are presented to synchronize the above two hyperchaotic systems. The corresponding theoretical proof is given and numerical simulations are presented to verify the effectiveness of the proposed scheme.


2009 ◽  
Vol 23 (22) ◽  
pp. 2593-2606 ◽  
Author(s):  
YONGGUANG YU ◽  
HAN-XIONG LI ◽  
JUNZHI YU

This paper investigates the generalized synchronization issue for two different dimensional chaotic systems with unknown parameters. Based on Lyapunov stability theory and adaptive control theory, an adaptive controller is derived to achieve the generalized synchronization whether the dimension of drive system is greater than the one of the response system or not. Meanwhile, corresponding parameter updating laws can be obtained so as to exactly identify uncertain parameters. This technique has been successfully applied to two examples, the generalized synchronization of hyperchaotic Rössler system and chaotic Lorenz system, chaotic Chen system and generalized Lorenz system. Numerical simulations are finally shown to illustrate the effectiveness of the proposed approach.


2014 ◽  
Vol 602-605 ◽  
pp. 946-949
Author(s):  
Jing Fang ◽  
Ruo Xun Zhang

This paper investigates the synchronization of incommensurate fractional-order chaotic systems, and proposes a modified adaptive-feedback controller for fractional-order chaos synchronization based on Lyapunov stability theory, fractional order differential inequality and adaptive control theory. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way. Simulation results for a fractional-order chaotic system is provided to illustrate the effectiveness of the proposed scheme.


2014 ◽  
Vol 65 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Rajagopal Karthikeyan ◽  
Vaidyanathan Sundarapandian

Abstract This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Tianzeng Li ◽  
Yu Wang ◽  
Yong Yang

In this paper, the synchronization of fractional-order chaotic systems is studied and a new fractional-order controller for hyperchaos synchronization is presented based on the Lyapunov stability theory. The proposed synchronized method can be applied to an arbitrary four-dimensional fractional hyperchaotic system. And we give the optimal value of control parameters to achieve synchronization of fractional hyperchaotic system. This approach is universal, simple, and theoretically rigorous. Numerical simulations of several fractional-order hyperchaotic systems demonstrate the universality and the effectiveness of the proposed method.


2008 ◽  
Vol 22 (15) ◽  
pp. 2453-2461 ◽  
Author(s):  
XINGYUAN WANG ◽  
YONG WANG

This paper analyzes the synchronization control of new chaotic systems called Lorenz-like systems. Based on the Lyapunov stability theory, an adaptive controller and a parameter update rule are designed. It is proved that the controller and update rule not only achieve self-synchronization of Lorenz-like systems but can also make the Lorenz-like system asymptotically synchronized with the Rössler system, and further identify the uncertain system parameters. Numerical simulations have shown the effectiveness of the adaptive controller.


2011 ◽  
Vol 25 (03) ◽  
pp. 399-406
Author(s):  
TIANSHU WANG ◽  
XINGYUAN WANG

This paper studies the global synchronization of a new hyperchaotic Lorenz system proposed by Wang et al. Based on the Lyapunov stability theory, the coupled control matrix is discussed when either knowing or unknowing the system boundary, respectively. The analysis of theory and numerical simulations show that the synchronization of hyperchaos Lorenz system can be realized effectively with the methods.


Sign in / Sign up

Export Citation Format

Share Document