STRUCTURAL, ELECTRONIC, MAGNETIC AND OPTICAL PROPERTIES OF FERROMAGNETIC Pb1-xEuxSe AND Pb1-xEuxTe ALLOYS (x = 0, 0.25, 0.50, 0.75 AND 1)

2013 ◽  
Vol 27 (19) ◽  
pp. 1350100 ◽  
Author(s):  
S. M. ALAY-E-ABBAS ◽  
S. YOUNAS ◽  
S. HANIF ◽  
M. SHARIF ◽  
IQBAL HUSSAIN ◽  
...  

First-principles total energy calculations have been performed using full potential linear-augmented-plane-wave method within the framework of density functional theory to study the structural, electronic, magnetic and optical properties of the Pb 1-x Eu x Se and Pb 1-x Eu x Te (0 ≤ x ≤1) alloys in the ferromagnetic (FM) ordering. The calculations have been extended to treat the strongly localized f electrons of Eu atom by the self-interaction correction (SIC) approach. For structural optimization, the Wu and Cohen generalized gradient approximation (GGA) functional has been used, whereas for calculating electronic properties, the GGA parameterization scheme formulated by Engel and Vosko (EV) has also been utilized. It has been observed that the use of experimental value of Coulomb parameter (Uf- expt. ) within the SIC does not yield an accurate EuSe and EuTe energy band structure. The improvement in the electronic band structures of nonmagnetic PbSe / PbTe and ferromagnetic EuSe / EuTe have been achieved by considering the effects of spin–orbit coupling for Pb atoms, by a suitable choice of U and by treating the U values for Eu atom's f and d electrons as parameters. The electronic and optical properties of FM Pb 1-x Eu x Se in agreement with experiments can be achieved by combining EV GGA with a Hubbard U < Uf- expt. , however, a stronger and stable AFM coupling in EuTe leaves the above scheme unable to provide good electronic structure of FM Pb 1-x Eu x Te . In case of Pb 1-x Eu x Se the nonlinear behaviour of electronic structure is reflected in the optical properties of Eu -doped PbSe that have been studied in terms of incident photons' energy dependent complex dielectric function.

2013 ◽  
Vol 27 (23) ◽  
pp. 1350122 ◽  
Author(s):  
A. AUDZIJONIS ◽  
R. SEREIKA

Electronic structure and electronic charge density in the interatomic bonds are investigated with ab initio calculations based on the density-functional theory. The full potential linearized augmented plane-wave method was used with the generalized gradient approximation. Considering the partial density of states the electron charge density distribution in the Bi , S , Se and Br atomic bonds is caused by Bi-6p , S-3p , Se-4p , Br-4p orbital hybridization. Electronic charge distribution of one BiSBr and BiSeBr molecule range suggest that the Bi – S , Bi – Se and Bi – Br bonds are covalent–ionic type. Bi – S and Bi – Se bonds are strong covalent with a not great ionicity factor ([Formula: see text], Bi – S ; [Formula: see text], Bi – Se ). Bi – Br bonds are covalent type with a larger ionicity factor ([Formula: see text], Bi – Br ).


2012 ◽  
Vol 26 (32) ◽  
pp. 1250199 ◽  
Author(s):  
M. HARMEL ◽  
H. KHACHAI ◽  
M. AMERI ◽  
R. KHENATA ◽  
N. BAKI ◽  
...  

Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3( A = Cs ; M = Ca and Sr ) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.


Author(s):  
Afiq Radzwan ◽  
Rashid Ahmed ◽  
Amiruddin Shaari ◽  
Abdullahi Lawal ◽  
Ying Xuan Ng

The structural, electronic and optical  properties of Sb2S3 have been investigated  using full-potential linearized augmented plane wave method within density functional theory (DFT) framework, treating exchange-correlation potential with Engel-Vosko generalized gradient approximation (EV-GGA). Electronic properties calculations were performed  with and without taken into account the effects of spin-orbit coupling (SOC) . From our results we found that structural properties,density of states and band structure are in good agreement with experimental results.The effects of SOC and relativistic on electronic properties were found to be negligible. However, optical properties, namely, imaginary and real parts of dielectric function, reflectivity, absorption coefficient, refractive index, extinction coefficient and energy loss function were calculated and analyized.Optical gap of 1.61 eV proves that Sb2S3 metal chalcogenides is a promising material for solar cell device.


2012 ◽  
Vol 26 (17) ◽  
pp. 1250098 ◽  
Author(s):  
A. SAJID ◽  
S. M. ALAY-E-ABBAS ◽  
A. AFAQ ◽  
A. SHAUKAT

First principles total energy calculations have been performed using full potential linear augmented plane wave method (FP-LAPW) within density functional theory to study the structural, electronic and optical properties of MgS x Se 1-x, MgS x Te 1-x and MgSe x Te 1-x alloys in the rock salt crystallographic phase. The generalized gradient approximation parameterization scheme has been used for calculating the ground state structural parameters and their deviation from the Vegard's law has been discussed. Full relativistic electronic band structures and density of states have been calculated to study the electronic properties of the end binary compounds and ternary alloys MgS x Se 1-x, MgS x Te 1-x and MgSe x Te 1-x (0.25 < x < 0.75). Optical bowing for these semiconductor alloys has been discussed in term of volume deformation, electronegativity and structural relaxation. Optical properties of the binary and ternary magnesium chalcogenides have been calculated in terms of the complex dielectric function and the results are compared with available theoretical and experimental data.


2014 ◽  
Vol 605 ◽  
pp. 565-568
Author(s):  
Sacia Djeroud ◽  
Ibtissem Bouchahdane

In the fields of spintronics, extensive experiments and theoretical studies have been performed to discover materials that are ferromagnetic at room temperature. Many materials have attracted a great interest due to their potential applications in this area and their new physical properties. Our aim in this work is to study the electronic structure of Mn-doped Ge under pressure effect. We used the full-potential linearized augmented plane wave plus the local orbitals method based on the density functional theory within the generalized gradient approximation as parameterized by Perdew. Our calculations were ported on a 2x2x2 Germanium supercell where Ge atom in position (0, 0, 0) was substituted by Mn atom. The theoretical equilibrium lattice parameters are determined. The electronic band structures calculated at equilibrium show the half metallic character of MnxGe1-x.The totat density of states demonstrate the half metallicity under pressure of MnxGe1-x. In addition, the magnetic moment of the super-cell increases under pressure while the magnetic moment of Mn decreases with pressure increasing which is consistent with the available data.Keywords: spintronic, ferromagnetic, hydrostatic pressure, electronic properties, DFT.


2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


2003 ◽  
Vol 793 ◽  
Author(s):  
Daniel I Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

ABSTRACTComplex quaternary chalcogenides (AgSb)xPbn-2xTen (0<x<n/2) are thought to be narrow band-gap semiconductors which are very good candidates for room and high temperature thermoelectric applications. These systems form in the rock-salt structure similar to the well known two component system PbTe (x=0). In these systems Ag and Sb occupy Pb sites randomly although there is some evidence of short-range order. To gain insights into the electronic structure of these compounds, we have performed electronic structure calculations in AgSbTe2 (x=n/2). These calculations were carried out within ab initio density functional theory (DFT) using full potential linearized augmented plane wave (LAPW) method. The generalized gradient approximation (GGA) was used to treat the exchange and correlation potential. Spinorbit interaction (SOI) was incorporated using a second variational procedure. Since it is difficult to treat disorder in ab initio calculations, we have used several ordered structures for AgSbTe2. All these structures show semimetallic behavior with a pseudogap near the Fermi energy. Te and Sb p orbitals, which are close in energy, hybridize rather strongly indicating a covalent interaction between Te and Sb atoms.


2002 ◽  
Vol 721 ◽  
Author(s):  
G. Y. Guo

AbstractLatest first-principles density functional theoretical calculations using the generalized gradient approximation and highly accurate all-eleectron full-potential linearized augmented plane wave method, show that bulk hcp Cr would be a paramagnet and that no ferromagnetic state could be stabilized over a wide range of volume [1]. To understand the recent observation of the weakly ferromagnetic state of Cr in hcp Cr/Ru (0001) superlattices [2], the same theoretical calculations have been carried out for the hcp Cr3/Ru7 (0001) and hcp Cr3/fcc Cu6 (111) superlattices. The Cr/Ru superlattice is found to be ferromagnetic with a small magnetic moment of ∼0.31μB/Cr while in contrast, Cr/Cu superlattice is found to be nonmagnetic.


Sign in / Sign up

Export Citation Format

Share Document