scholarly journals THERMODYNAMIC LIMIT IN STATISTICAL PHYSICS

2014 ◽  
Vol 28 (09) ◽  
pp. 1430004 ◽  
Author(s):  
A. L. KUZEMSKY

The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by Bogoliubov, who developed a general formalism for establishing the limiting distribution functions in the form of formal series in powers of the density. In that study, he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2229-2234
Author(s):  
LUDWIK TURKO

Finite volume corrections to higher moments are important observable quantities. They make possible to differentiate between different statistical ensembles even in the thermodynamic limit. It is shown that this property is a universal one. The classical grand canonical distribution is compared to the canonical distribution in the rigorous procedure of approaching the thermodynamic limit.


Author(s):  
Fabrizio Altarelli ◽  
Rémi Monasson ◽  
Guilhem Semerjian ◽  
Francesco Zamponi

This chapter surveys a part of the intense research activity that has been devoted by theoretical physicists to the study of randomly generated k-SAT instances. It can be at first sight surprising that there is a connection between physics and computer science. However low-temperature statistical mechanics concerns precisely the behaviour of the low-lying configurations of an energy landscape, in other words the optimization of a cost function. Moreover the ensemble of random k-SAT instances exhibit phase transitions, a phenomenon mostly studied in physics (think for instance at the transition between liquid and gaseous water). Besides the introduction of general concepts of statistical mechanics and their translations in computer science language, the chapter presents results on the location of the satisfiability transition, the detailed picture of the satisfiable regime and the various phase transitions it undergoes, and algorithmic issues for random k-SAT instances.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050060
Author(s):  
M. Gazdzicki ◽  
M. I. Gorenstein ◽  
O. Savchuk ◽  
L. Tinti

Properties of basic statistical ensembles in the Cell Model are discussed. The simplest version of the model with a fixed total number of particles is considered. The microcanonical ensembles of distinguishable and indistinguishable particles, with and without a limit on the maximum number of particles in a single cell, are discussed. The joint probability distributions of particle multiplicities in cells for different ensembles are derived, and their second moments are calculated. The results for infinite volume limit are calculated. The obtained results resemble those in the statistical physics of bosons, fermions and boltzmanions.


Sign in / Sign up

Export Citation Format

Share Document