Author's reply to a Note on the Reply to Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

2014 ◽  
Vol 28 (28) ◽  
pp. 1475003
Author(s):  
Q.-B. Lu
2013 ◽  
Vol 27 (17) ◽  
pp. 1350073 ◽  
Author(s):  
Q.-B. LU

This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O 3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl 4 and HCFCs), CO 2, total O 3, lower stratospheric temperatures and global surface temperatures. For O 3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O 3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O 3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 ~ 25 % of the Antarctic O 3 hole is found, while no recovery of O 3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO 2 concentration during 1850–1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96–0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970–2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of ~0.6°C in 1970–2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 ~ 7 decades. It is also expected that the global sea level will continue to rise in coming 1 ~ 2 decades until the effect of the global temperature recovery dominates over that of the polar O 3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O 3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.


2014 ◽  
Vol 28 (13) ◽  
pp. 1482002 ◽  
Author(s):  
Q.-B. Lu

In their Comment, Müller and Grooß continuously use problematic "observed data" and misleading arguments to make a case against our CRE mechanism of the ozone hole and CFC-warming mechanism of global climate change. They make the groundless assertion that the CRE theory cannot be considered as an independent process for ozone loss in the polar stratosphere. Their claim that the impact of the CRE mechanism on polar chlorine activation and ozone loss in the stratosphere would be limited does not agree with the observed data over the past decades. They also make many contradictory and fact-distorting arguments that "There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1–2 years, and the reported detection of a pronounced recovery (by about 20–25%) in Antarctic total ozone measurements by the year 2010 is in error." These assertions ignore and contradict a great deal of robust observed data from both laboratory and field measurements reported in the literature including their own publications. Their new argument for the photodissociation of CFCs on PSCs also contradicts their previous extraordinary efforts including the use of fabricated "ACE-FTS satellite data" to argue for no physical/chemical loss of CFCs in the winter lower polar stratosphere. Finally, they do not provide any scientific evidence to support their criticism for the no physical basis of the CFC-warming theory and its conclusions. In summary, their misleading arguments and false "data" do not change the convincing conclusion reached by robust observations in my recent paper that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O 3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.


1992 ◽  
Vol 3 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Ragnar E. Löfstedt

This paper discusses the effects of the ongoing debate concerning the greenhouse effect in Sweden on the general public in the town of Umeå. Issues that are seen to be of importance include: 1. the people's inability to disassociate the greenhouse effect from the ozone hole debate, 2. the equity issues connected to the region, 3. people's attitudes toward the greenhouse effect, and 4. the solutions considered to be the best for solving the problem of global climate change. These issues are based on twenty four person to person in-depth interviews which took place during July and August of 1990.


1992 ◽  
Vol 155 ◽  
pp. 9-13
Author(s):  
R.J Braithwaite ◽  
N Reeh ◽  
A Weidick

Possible global climate change caused by increased 'greenhouse effect' continues to be a matter of international public concern. In particular, a warmer climate is expected to cause increased melting of the Greenland ice sheet, and a rise in world sea level. The Greenland ice sheet is therefore a potential hazard for low-Iying countries. Climate warming may be apparent first, and with greatest magnitude, at high latitudes so that increased melting of the Greenland ice sheet could give early warning of global climate change. For these reasons, GGU and foreign organisations are studying Greenland glaciers in connection with the 'greenhouse effect' (Fig. 1). The present review updates the note by Braithwaite (1990).


Sign in / Sign up

Export Citation Format

Share Document