scholarly journals Irreversible work versus fidelity susceptibility for infinitesimal quenches

2017 ◽  
Vol 31 (06) ◽  
pp. 1750065 ◽  
Author(s):  
Simone Paganelli ◽  
Tony J. G. Apollaro

We compare the irreversible work produced in an infinitesimal sudden quench of a quantum system at zero temperature with its ground state fidelity susceptibility, giving an explicit relation between the two quantities. We find that the former is proportional to the latter but for an extra term appearing in the irreversible work which includes also contributions from the excited states. We calculate explicitly the two quantities in the case of the quantum Ising chain, showing that at criticality they exhibit different scaling behaviors. The irreversible work, rescaled by square of the quench’s amplitude, exhibits a divergence slower than that of the fidelity susceptibility. As a consequence, the two quantities obey also different finite-size scaling relations.

1999 ◽  
Vol 10 (05) ◽  
pp. 875-881 ◽  
Author(s):  
N. AKTEKIN ◽  
A. GÜNEN ◽  
Z. SAĞLAM

The four-dimensional Ising model is simulated on the Creutz cellular automaton with increased precision. The data are analyzed according to the finite-size scaling relations available. The precision of the critical values related to magnetic susceptibility is improved by one digit, but in order to reach to the same precision for those related to the specific heat more simulation runs at the critical temperatures of the finite-size lattices are required.


1987 ◽  
Vol 111 ◽  
Author(s):  
Per Arne Rikvold ◽  
Joseph B. Collins ◽  
G. D. Hansen ◽  
J. D. Gunton ◽  
E. T. Gawlinski

AbstractWe consider a three-state lattice-gas with nearest-neighbor interactions on a triangular lattice as a model for multicomponent chemi- and physisorption. By varying the lateral interaction constants between the adsorbate particles, this model can be made to exhibit either enhanced adsorption or poisoning (inhibited adsorption). We discuss here the conditions on the interaction constants that lead to poisoning. We present the results of a ground-state calculation and detailed numerical study of the phase diagram for a set of interactions that exhibits poisoning. We calculate the phase diagrams and adsorption isotherms by the finite-size scaling transfer-matrix method. We consider the result as a simple model for the coadsorption of Sulphur and Hydrogen on a Platinum (111) surface, with interaction constants estimated from experimental data. The resulting adsorption isotherms are in good agreement with experimental results.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350066 ◽  
Author(s):  
F. W. S. LIMA

We study a nonequilibrium model with up–down symmetry and a noise parameter q known as majority-vote model (MVM) of Oliveira 1992 on opinion-dependent network or Stauffer–Hohnisch–Pittnauer (SHP) networks. By Monte Carlo (MC) simulations and finite-size scaling relations the critical exponents β∕ν, γ∕ν and 1∕ν and points qc and U* are obtained. After extensive simulations, we obtain β∕ν = 0.230(3), γ∕ν = 0.535(2) and 1∕ν = 0.475(8). The calculated values of the critical noise parameter and Binder cumulant are qc = 0.166(3) and U* = 0.288(3). Within the error bars, the exponents obey the relation 2β∕ν + γ∕ν = 1 and the results presented here demonstrate that the MVM belongs to a different universality class than the equilibrium Ising model on SHP networks, but to the same class as majority-vote models on some other networks.


Sign in / Sign up

Export Citation Format

Share Document