Multiple invariant solutions of the 3D potential Yu–Toda–Sasa–Fukuyama equation via symmetry technique

2020 ◽  
Vol 34 (20) ◽  
pp. 2050188
Author(s):  
Rodica Cimpoiasu

This paper studies the potential form of the 3D potential Yu–Toda–Sasa–Fukuyama equation through the perspective of Lie symmetry analysis. This technique combined with symbolic computations does prove that the general Lie operator depends on five parameters and six independent arbitrary functions that are variable in respect to time. The group invariant solutions associated to some 1D subalgebras are systematically construct and they do involve arbitrary functions. When these functions are expressed under several specific forms, the associated wave solutions possess multiple structures. Graphical representations of some particular solutions are as well provided. As far as we know such general solutions are presented here for the first time and do indicate the symmetry method to be applied in order to solve other multidimensional, integrable, or nonintegrable nonlinear dynamical models.

2014 ◽  
Vol 69 (8-9) ◽  
pp. 489-496 ◽  
Author(s):  
Mir Sajjad Hashemi ◽  
Ali Haji-Badali ◽  
Parisa Vafadar

In this paper, we utilize the Lie symmetry analysis method to calculate new solutions for the Fornberg-Whitham equation (FWE). Applying a reduction method introduced by M. C. Nucci, exact solutions and first integrals of reduced ordinary differential equations (ODEs) are considered. Nonlinear self-adjointness of the FWE is proved and conserved vectors are computed


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mehdi Nadjafikhah ◽  
Vahid Shirvani-Sh

The Lie symmetry method is performed for the fifth-order nonlinear evolution Kudryashov-Sinelshchikov equation. We will find ones and two-dimensional optimal systems of Lie subalgebras. Furthermore, preliminary classification of its group-invariant solutions is investigated.


2018 ◽  
Vol 73 (4) ◽  
pp. 357-362 ◽  
Author(s):  
Bo Zhang ◽  
Hengchun Hu

AbstractThe similarity reduction and similarity solutions of a Boussinesq-like equation are obtained by means of Clarkson and Kruskal (CK) direct method. By using Lie symmetry method, we also obtain the similarity reduction and group invariant solutions of the model. Further, we compare the results obtained by the CK direct method and Lie symmetry method, and we demonstrate the connection of the two methods.


2020 ◽  
pp. 2150025
Author(s):  
Hui Gao ◽  
Gangwei Wang

Under investigation in this paper is a two-component Novikov system (also called Geng-Xue equation), which was proposed by Geng and Xue in 2009. Firstly, via the Lie symmetry method, infinitesimal generators, commutator table of Lie algebra and symmetry groups of the two-component Novikov system are presented. At the same time, some group invariant solutions are computed through similarity reductions. In particular, we construct peakon solution by applying the distribution theory. In addition, based on obtained group invariant solutions and symmetry transformations, we derive some new exact solutions, which include stationary solutions, smooth solutions, and a weak solution. The analytical properties to some of group invariant solutions and new exact solutions are discussed, such as decay, asymptotic behavior, and boundedness.


2018 ◽  
Vol 331 ◽  
pp. 457-472 ◽  
Author(s):  
K. Sakkaravarthi ◽  
A.G. Johnpillai ◽  
A. Durga Devi ◽  
T. Kanna ◽  
M. Lakshmanan

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Gülden Gün ◽  
Teoman Özer

We analyze Noether and -symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate -symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of -symmetries. Finally, we compare the results obtained from different classifications.


Sign in / Sign up

Export Citation Format

Share Document