Nonlinear dynamical study to time fractional Dullian–Gottwald–Holm model of shallow water waves

Author(s):  
M. Younis ◽  
Aly R. Seadawy ◽  
I. Sikandar ◽  
M. Z. Baber ◽  
N. Ahmed ◽  
...  

This paper studies the exact traveling wave solutions to the nonlinear Dullin–Gottwald–Holm model which has the application in shallow-water waves in which the fractional derivative is considered in the sense of conformable derivative. Diverse exact solutions in hyperbolic, trigonometric and plane wave forms are obtained using two integration norms. For this purpose [Formula: see text]-expansion method and reccati mapping techniques are used. The 3D plots and their corresponding contour graphs are also depicted. Being concise and straightforward, the calculations demonstrate the effectiveness and convenience of the method for solving other nonlinear partial differential equations.

2018 ◽  
Vol 15 (03) ◽  
pp. 1850017 ◽  
Author(s):  
Aly R. Seadawy

The problem formulations of models for three-dimensional weakly nonlinear shallow water waves regime in a stratified shear flow with a free surface are studied. Traveling wave solutions are generated by deriving the nonlinear higher order of nonlinear evaluation equations for the free surface displacement. We obtain the velocity potential and pressure fluid in the form of traveling wave solutions of the obtained nonlinear evaluation equation. The obtained solutions and the movement role of the waves of the exact solutions are new travelling wave solutions in different and explicit form such as solutions (bright and dark), solitary wave, periodic solitary wave elliptic function solutions of higher-order nonlinear evaluation equation.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050028 ◽  
Author(s):  
Jian-Gen Liu ◽  
Xiao-Jun Yang ◽  
Yi-Ying Feng

With the aid of the planar dynamical systems and invariant algebraic cure, all algebraic traveling wave solutions for two extended (2 + 1)-dimensional Kadomtsev–Petviashvili equations, which can be used to model shallow water waves with weakly nonlinear restoring forces and to describe waves in ferromagnetic media, were obtained. Meanwhile, some new rational solutions are also yielded through an invariant algebraic cure with two different traveling wave transformations for the first time. These results are an effective complement to existing knowledge. It can help us understand the mechanism of shallow water waves more deeply.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document