Field-Induced Columnar and Bent-Wall-Like Patterns in a Ferrofluid Emulsion

1999 ◽  
Vol 13 (14n16) ◽  
pp. 2093-2100 ◽  
Author(s):  
G. A. Flores ◽  
J. Liu ◽  
M. Mohebi ◽  
N. Jamasbi

Using optical microscopy, we studied magnetic-field-induced structures in a confined ferrofluid emulsion. Disks, "worms" and branch-like patterns are observed in 2-D, reflecting columnar, bent-wall-like and labyrinthine structures in 3-D. These structures are controlled by varying either the thickness of the cell used to confine the sample, the particle concentration, or the rate of the magnetic field application. The induced structures are characterized by both the ratio of "worms" vs. total aggregates and the average complexity of the aggregates. "Phase" diagrams are obtained between these tuning parameters to characterize columnar to bent-wall structural transitions.

2020 ◽  
Author(s):  
Lucielen Oliveira Santos ◽  
Pedro Garcia Pereira Silva ◽  
Sharlene Silva Costa ◽  
Taiele Blumberg Machado

Use of fuels from non-renewable sources has currently been considered unsustainable due to the exhaustion of supplies and environmental impacts caused by them. Climate change has concerned and triggered environmental policies that favor research on clean and renewable energy sources. Thus, production of third generation biofuels is a promising path in the biofuel industry. To yield this type of biofuels, microalgae should be highlighted because this raw material contains important biomolecules, such as carbohydrates and lipids. Technological approaches have been developed to improve microalgal cultivation under ecological conditions, such as light intensity, temperature, pH and concentrations of micro and macronutrients. Thus, magnetic field application to microalgal cultivation has become a viable alternative to obtain high yields of biomass concentration and accumulation of carbohydrates and lipids.


Sign in / Sign up

Export Citation Format

Share Document