Vortex Configurations in Mesoscopic Superconducting Nanowires

2003 ◽  
Vol 17 (10n12) ◽  
pp. 537-547 ◽  
Author(s):  
G. Stenuit ◽  
S. Michotte ◽  
J. Govaerts ◽  
L. Piraux ◽  
D. Bertrand

Beyond the well-known Abrikosov and giant vortex configurations, new solutions to the Ginzburg–Landau model corresponding to vortices of integer and half-integer winding number are described. Phase diagrams (Bext, Energy) and magnetization curves have been determined, aiming towards an understanding of the magnetic properties of lead nanowires and the possible consequences of such solutions with respect to the switching mechanism between vortex states in mesoscopic superconductors.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander A. Penin ◽  
Quinten Weller

Abstract We elaborate a theory of giant vortices [1] based on an asymptotic expansion in inverse powers of their winding number n. The theory is applied to the analysis of vortex solutions in the abelian Higgs (Ginzburg-Landau) model. Specific properties of the giant vortices for charged and neutral scalar fields as well as different integrable limits of the scalar self-coupling are discussed. Asymptotic results and the finite-n corrections to the vortex solutions are derived in analytic form and the convergence region of the expansion is determined.


1978 ◽  
Vol 17 (1) ◽  
pp. 455-470 ◽  
Author(s):  
Kyozi Kawasaki ◽  
Mehmet C. Yalabik ◽  
J. D. Gunton

2015 ◽  
Vol 29 (03) ◽  
pp. 1550009 ◽  
Author(s):  
Shan-Shan Wang ◽  
Guo-Qiao Zha

Based on the time-dependent Ginzburg–Landau equations, we study numerically the vortex configuration and motion in mesoscopic superconducting cylinders. We find that the effects of the geometric symmetry of the system and the noncircular multiply-connected boundaries can significantly influence the steady vortex states and the vortex matter moving. For the square cylindrical loops, the vortices can enter the superconducting region in multiples of 2 and the vortex configuration exhibits the axial symmetry along the square diagonal. Moreover, the vortex dynamics behavior exhibits more complications due to the existed centered hole, which can lead to the vortex entering from different edges and exiting into the hole at the phase transitions.


2001 ◽  
Vol 63 (3) ◽  
Author(s):  
Javier Buceta ◽  
Juan M. R. Parrondo ◽  
F. Javier de la Rubia

Sign in / Sign up

Export Citation Format

Share Document