Geometric effect on the vortex configuration and motion in mesoscopic superconducting cylinders

2015 ◽  
Vol 29 (03) ◽  
pp. 1550009 ◽  
Author(s):  
Shan-Shan Wang ◽  
Guo-Qiao Zha

Based on the time-dependent Ginzburg–Landau equations, we study numerically the vortex configuration and motion in mesoscopic superconducting cylinders. We find that the effects of the geometric symmetry of the system and the noncircular multiply-connected boundaries can significantly influence the steady vortex states and the vortex matter moving. For the square cylindrical loops, the vortices can enter the superconducting region in multiples of 2 and the vortex configuration exhibits the axial symmetry along the square diagonal. Moreover, the vortex dynamics behavior exhibits more complications due to the existed centered hole, which can lead to the vortex entering from different edges and exiting into the hole at the phase transitions.

2018 ◽  
Vol 31 (11) ◽  
pp. 3445-3451 ◽  
Author(s):  
Hasnain Mehdi Jafri ◽  
Xingqiao Ma ◽  
Congpeng Zhao ◽  
Houbing Huang ◽  
Tauseef Anwar ◽  
...  

2012 ◽  
Vol 26 (06) ◽  
pp. 1250035 ◽  
Author(s):  
WALTER J. FREEMAN ◽  
ROBERTO LIVI ◽  
MASASHI OBINATA ◽  
GIUSEPPE VITIELLO

The formation of amplitude modulated and phase modulated assemblies of neurons is observed in the brain functional activity. The study of the formation of such structures requires that the analysis has to be organized in hierarchical levels, microscopic, mesoscopic, macroscopic, each with its characteristic space-time scales and the various forms of energy, electric, chemical, thermal produced and used by the brain. In this paper, we discuss the microscopic dynamics underlying the mesoscopic and the macroscopic levels and focus our attention on the thermodynamics of the nonequilibrium phase transitions. We obtain the time-dependent Ginzburg–Landau equation for the nonstationary regime and consider the formation of topologically nontrivial structures such as the vortex solution. The power laws observed in functional activities of the brain is also discussed and related to coherent states characterizing the many-body dissipative model of brain.


Sign in / Sign up

Export Citation Format

Share Document