FAILURE BEHAVIOR OF ELBOWS WITH LOCAL WALL THINNING

2008 ◽  
Vol 22 (11) ◽  
pp. 845-850 ◽  
Author(s):  
SUNG-HO LEE ◽  
JEONG-KEUN LEE ◽  
JAI-HAK PARK

Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.

Author(s):  
Kotoji Ando ◽  
Koji Takahashi ◽  
Masakazu Hisatsune ◽  
Kunio Hasegawa

Monotonic four-point bending tests were conducted using tee pipe specimens having local wall thinning. The effects of local wall thinning on the failure behaviors of tee pipes were investigated. Local wall thinning was machined on the inside of pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area were l = 100 mm in eroded axial length, d/t = 0.5 and 0.8 in eroded ratio, and 2θ = 90° and 180° in eroded angle. The area undergoing local wall thinning was subjected to tensile stress. It was found that fracture type could be classified into ovalization or crack initiation, depending on eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using finite element method to discuss the effects of position and geometries of wall thinning in both tee pipes and straight pipes.


Author(s):  
Jin Weon Kim ◽  
Chi Yong Park

The pipe failure tests were performed using 102mm-Sch.80 carbon steel pipe with various simulated local wall thinning defects, in the present study, to investigate the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The failure mode, load carrying capacity, and deformation ability were analyzed from the results of experiments conducted under loading conditions of 4-point bending and internal pressure. A failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Also, the results indicated that the load carrying capacity and deformation ability were depended on stress state in the thinning region and dimensions of thinning defect. With increase in axial length of thinning area, for applying tensile stress to the thinning region, the dependence of load carrying capacity was determined by circumferential thinning angle, and the deformation ability was proportionally increased regardless of the circumferential angle. For applying compressive stress to thinning region, however, the load carrying capacity was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on dynamic behavior and the failure mode of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. The degradation considered in this study was wall thinning, which would be caused in piping systems due to the effects of aging. The degradation condition induced in the piping system model was 50% full circumferential wall thinning at an elbow. The test model was designed to cause out-of-plane bending moment to the thinned-wall elbow by excitation tests. The model without wall thinning was also used in the excitation test to compare the behavior of the piping system models. These models were excited under same input acceleration until fatigue cracks penetrated or an excessive deformation occurred to the models. Through these tests, the vibration characteristic and the process to failure of degraded piping models were obtained for the out-of-plane bending model. This paper describes the dynamic response and failure behavior of piping systems with wall thinning based on the test results.


Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Author(s):  
Jin Weon Kim ◽  
Yeon Soo Na ◽  
Chi Yong Park

Local wall-thinning due to flow-accelerated corrosion is one of the degradation mechanisms of carbon steel piping in nuclear power plant (NPP). It is a main concern in carbon steel piping systems in terms of the safety and operability of the NPP. Recently, the integrity of piping components containing local wall-thinning has become more important for maintaining the reliability of a nuclear piping system, and has been the subject of several studies. However, although wall-thinning in pipe bends and elbows has been frequently reported, its effect on the integrity of pipe bends and elbows has not yet been systematically investigated. Thus, the purpose of this study was to investigate the effect of the circumferential location of a local wall-thinning defect on the collapse behavior of an elbow. For this purpose, the present study used three-dimensional finite element analyses on a 90-degree elbow containing local wall-thinning at the crown of the bend region and evaluated the collapse moment of the wall-thinned elbow under various thinning geometries and loading conditions. The combined internal pressure and bending loads were considered as an applied load. Internal pressure of 0∼20 MPa and both closing-and opening-mode bending were applied. The results of the analyses showed that a reduction in the collapse moment of the elbow due to local wall-thinning was more significant when a defect was located at the crown than when a defect was located at the intrados and extrados. Also, the effect of the internal pressure on the collapse moment depended on the circumferential location of the thinning defect and mode of the bending load.


2007 ◽  
Vol 237 (4) ◽  
pp. 335-341 ◽  
Author(s):  
Koji Takahashi ◽  
Kotoji Ando ◽  
Masakazu Hisatsune ◽  
Kunio Hasegawa

2006 ◽  
Vol 321-323 ◽  
pp. 743-746 ◽  
Author(s):  
Jong Ho Park ◽  
Joon Hyun Lee ◽  
Gyeong Chul Seo ◽  
Sang Woo Choi

In carbon steel pipes of nuclear power plants, local wall thinning may result from erosion-corrosion or flow-accelerated corrosion(FAC) damage. Local wall thinning is one of the major causes for the structural fracture of these pipes. Therefore, assessment of local wall thinning due to corrosion is an important issue in nondestructive evaluation for the integrity of nuclear power plants. In this study, laser-generated ultrasound technique was employed to evaluate local wall thinning due to corrosion. Guided waves were generated in the thermoelastic regime using a Q-switched pulsed Nd:YAG laser with a linear slit array. . In this paper, time-frequency analysis of ultrasonic waveforms using wavelet transform allowed the identification of generated guided wave modes by comparison with the theoretical dispersion curves. Modes conversion and group velocity were employed to detect thickness reduction.


2006 ◽  
Vol 2006.81 (0) ◽  
pp. _11-8_
Author(s):  
Ja-Moon YOON ◽  
Kotoji ANDO ◽  
Koji TAKAHASHI ◽  
Hideo ANDO ◽  
Ki-Woo NAM

Sign in / Sign up

Export Citation Format

Share Document