SIMULATION OF INCOMPRESSIBLE VISCOUS FLOWS BY BOUNDARY CONDITION-IMPLEMENTED IMMERSED BOUNDARY METHOD

2009 ◽  
Vol 23 (03) ◽  
pp. 345-348
Author(s):  
Q. LI ◽  
C. SHU ◽  
H. Q. CHEN

A new numerical approach is presented in this work to simulate incompressible flows. The present approach combines the ideas of the conventional immersed boundary method (IBM) for decoupling the solution of governing equations with the solid boundary and the local domain-free discretization (DFD) method for implementation of boundary conditions. Numerical results for simulation of flows around a circular cylinder showed that the present approach can provide accurate solutions effectively.

2012 ◽  
Vol 4 (03) ◽  
pp. 311-324 ◽  
Author(s):  
Y. L. Wu ◽  
C. Shu ◽  
H. Ding

AbstractA local domain-free discretization-immersed boundary method (DFD-IBM) is presented in this paper to solve incompressible Navier-Stokes equations in the primitive variable form. Like the conventional immersed boundary method (IBM), the local DFD-IBM solves the governing equations in the whole domain including exterior and interior of the immersed object. The effect of immersed boundary to the surrounding fluids is through the evaluation of velocity at interior and exterior dependent points. To be specific, the velocity at interior dependent points is computed by approximate forms of solution and the velocity at exterior dependent points is set to the wall velocity. As compared to the conventional IBM, the present approach accurately implements the non-slip boundary condition. As a result, there is no flow penetration, which is often appeared in the conventional IBM results. The present approach is validated by its application to simulate incompressible viscous flows around a circular cylinder. The obtained numerical results agree very well with the data in the literature.


2016 ◽  
Vol 136 ◽  
pp. 104-113 ◽  
Author(s):  
Y.L. Qiu ◽  
C. Shu ◽  
J. Wu ◽  
Y. Sun ◽  
L.M. Yang ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 118-125
Author(s):  
Mithun Kanchan ◽  
Ranjith Maniyeri

Background: Fluid flow in microchannels is restricted to low Reynolds number regimes and hence inducing chaotic mixing in such devices is a major challenge. Over the years, the Immersed Boundary Method (IBM) has proved its ability in handling complex fluid-structure interaction problems. Objectives: Inspired by recent patents in microchannel mixing devices, we study passive mixing effects by performing two-dimensional numerical simulations of wavy wall in channel flow using IBM. Methods: The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. Fluid variables are described by Eulerian coordinates and solid boundary by Lagrangian coordinates. A four-point Dirac delta function is used to couple both the coordinate variables. A momentum forcing term is added to the governing equation in order to impose the no-slip boundary condition between the wavy wall and fluid interface. Results: Parametric study is carried out to analyze the fluid flow characteristics by varying amplitude and wavelength of wavy wall configurations for different Reynolds number. Conclusion: Configurations of wavy wall microchannels having a higher amplitude and lower wavelengths show optimum results for mixing applications.


Sign in / Sign up

Export Citation Format

Share Document