A HYBRID METHOD TO DESIGN THE WIND TURBINE ROTOR

2009 ◽  
Vol 23 (03) ◽  
pp. 533-536 ◽  
Author(s):  
CONG-XIN YANG ◽  
ZHAO-XUE CHENG

Based on the wind turbine's complex wake vortex system and combining with the wind machine's aerodynamic performances, a hybrid method to design the wind turbine rotor, which discards the constant circulation along the wind rotor blade axis and embraces the airfoil's lift-drag characteristics, is presented. And the validity of the method is also proven by designing and computing a wind rotor.

Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


Author(s):  
Scott Dana ◽  
Joseph Yutzy ◽  
Douglas E. Adams

One of the primary challenges in diagnostic health monitoring and control of wind turbines is compensating for the variable nature of wind loads. Given the sometimes large variations in wind speed, direction, and other operational variables (like wind shear), this paper proposes a data-driven, online rotor model identification approach. A 2 m diameter horizontal axis wind turbine rotor is first tested using experimental modal analysis techniques. Through the use of the Complex Mode Indication Function, the dominant natural frequencies and mode shapes of dynamic response of the rotor are estimated (including repeated and pseudo-repeated roots). The free dynamic response properties of the stationary rotor are compared to the forced response of the operational rotor while it is being subjected to wind and rotordynamic loads. It is demonstrated that both narrowband (rotordynamic) and broadband (wind driven) responses are amplified near resonant frequencies of the rotor. Blade loads in the flap direction of the rotor are also estimated through matrix inversion for a simulated set of rotor blade input forces and for the operational loading state of the wind turbine in a steady state condition. The analytical estimates are shown to be accurate at frequencies for which the ordinary coherence functions are near unity. The loads in operation are shown to be largest at points mid-way along the span of the blade and on one of the three blades suggesting this method could be used for usage monitoring. Based on these results, it is proposed that a measurement of upstream wind velocity will provide enhanced models for diagnostics and control by providing a leading indicator of disturbances in the loads.


1999 ◽  
Vol 63 (3) ◽  
pp. 191-207 ◽  
Author(s):  
W.C. de Goeij ◽  
M.J.L. van Tooren ◽  
A. Beukers

2020 ◽  
Vol 10 (16) ◽  
pp. 8927-8935
Author(s):  
Roel May ◽  
Torgeir Nygård ◽  
Ulla Falkdalen ◽  
Jens Åström ◽  
Øyvind Hamre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document