PARTICLE TRANSPORT ACROSS BI-FLUID INTERFACE USING ACOUSTIC RADIATION FORCE

2010 ◽  
Vol 24 (13) ◽  
pp. 1397-1400
Author(s):  
YANG LIU ◽  
KIAN-MENG LIM

A bi-fluid micro-flow system is proposed for separating particles from its original solvent and re-diluting them into another solvent simultaneously. In this micro-flow system, two different miscible solvents flow parallel to each other through a 2-inlet-2-outlet micro-channel, where an acoustic standing wave is set up. Due to the differences in acoustic properties of these solvents, the pressure node of the acoustic wave is shifted from the middle line of the channel. Under the action of the acoustic radiation force, particles with positive ϕ-factors are extracted from their original solvent and re-suspended into the other solvent, wherein the pressure node resides. Particles suspended in the new solvent are collected at one of the two outlets downstream. Experiments were conducted on a prototype using two aqueous solutions: deionized water and 40% glycerin aqueous solution with polystyrene micro-particles. The results show that under the action of the acoustic standing wave, most of the particles were successfully transported from its original solvent to the other solvent and collected at the outlet.

Sensors ◽  
2017 ◽  
Vol 17 (7) ◽  
pp. 1664 ◽  
Author(s):  
Shilei Liu ◽  
Yanye Yang ◽  
Zhengyang Ni ◽  
Xiasheng Guo ◽  
Linjiao Luo ◽  
...  

2011 ◽  
Vol 1 (4) ◽  
pp. 553-564 ◽  
Author(s):  
Mark L. Palmeri ◽  
Kathryn R. Nightingale

Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies.


Sign in / Sign up

Export Citation Format

Share Document