STRUCTURAL, MECHANICAL AND LATTICE DYNAMICAL STABILITY OF AgC AND AuC COMPOUNDS: A FIRST PRINCIPLES STUDY

2012 ◽  
Vol 26 (17) ◽  
pp. 1250107 ◽  
Author(s):  
ENGIN ATESER ◽  
HAVVA BOGAZ OZISIK

Based on density functional theory, we have studied the structural stability, elastic, mechanical and lattice dynamical properties of AgC and AuC compounds for various structures: NaCl ( B1 ), CsCl ( B2 ), ZnS ( B3 ), wurtzite ( B4 ), WC ( B h), NiAs ( B8 1) and CdTe . Generalized gradient approximation has been used for modeling exchange-correlation effects. The second-order elastic constants and related polycrystalline properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Debye temperature and sound velocities) have been calculated and discussed. We have also calculated phonon dispersion and phonon density of states of these compounds in all considered structures. According to the results, we found that, AgC compound is mechanically and dynamically stable in B8 1, B1 and B4 structures. Our results indicate that B81 and B3 are the candidate stable structures energetically, mechanically and dynamically for AgC and AuC compounds, respectively.

2013 ◽  
Vol 27 (12) ◽  
pp. 1350046
Author(s):  
HAVVA BOGAZ OZISIK ◽  
KEMAL COLAKOGLU ◽  
ENGIN DELIGOZ

The thermodynamic properties of AgB 2 and AuB 2 compounds in AlB 2 and OsB 2-type structures are investigated from first-principles calculations based on density functional theory (DFT) using projector augmented waves (PAW) potentials within the generalized gradient approximation (GGA) for modeling exchange-correlation effects, respectively. Specifically, using the quasi-harmonic Debye model, the effects of pressure and temperature, up to 100 GPa and 1400 K, on the bulk modulus, Debye temperature, thermal expansion, heat capacity and the Grüneisen parameter are calculated successfully and trends are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59648-59654 ◽  
Author(s):  
X. K. Liu ◽  
W. Zhou ◽  
X. Liu ◽  
S. M. Peng

The effects of pressure on the structural and elastic properties of Be12Ti were investigated by the generalized gradient approximation (GGA) with a Perdew–Burke–Ernzerhof (PBE) exchange-correlation function using density-functional theory.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2005 ◽  
Vol 475-479 ◽  
pp. 3103-3106 ◽  
Author(s):  
You Song Gu ◽  
Jian He ◽  
Zhen Ji ◽  
Xiao Yan Zhan ◽  
Yue Zhang ◽  
...  

The electronic structures and magnetic properties of Fe-Pt systems were calculated by CASTEP codes, which employed density functional theory, generalized gradient approximation (GGA), Perdew Burke Ernzerh exchange correlation, Pulay density-mixing scheme and Ultra Soft pseudo potential. The band structures and density of states (DOS) were calculated, together with band populations and magnetic properties. The calculated results of α-Fe show the validatiy of this method in predication magnetic properties. It is found that as the Pt concentration increases, Fe 4s and 3d electrons decrease while 4p electrons increase, and the magnetic moment of Fe atom increases. Pt atoms also contribute to the magnetic moment due to polarization. The calculated magnetization agrees with experimental values quite well.


2013 ◽  
Vol 27 (06) ◽  
pp. 1350016
Author(s):  
ENGIN ATESER ◽  
HAVVA BOGAZ OZISIK ◽  
ENGIN DELIGOZ ◽  
KEMAL COLAKOGLU

We have studied structural, mechanical and dynamical properties of PdC and CdC compounds to predict the most stable structure. We have focused on seven binary structure types as rock salt (RS), caesium chloride ( CsCl ), zinc blende (ZB), wurtzite (WZ), tungsten carbide (WC), cadmium telluride ( CdTe ) and nickel arsenide ( NiAs ). For modelling exchange-correlation effects we have used generalized gradient (GGA) approximation based on Perdew–Burke–Ernzhorf functional (PBE). The polycrystalline elastic moduli such as Young's and shear moduli, Poisson's ratio, sound velocities, Debye temperatures and shear anisotropic factors have been presented for mechanically stable structures using second-order elastic constants calculated from the stress-strain relations. The results show that PdC is thermodynamically, mechanically and dynamically stable in ZB structure. On the other hand, while CdC is energetically in favor of RS structure, it is mechanically and dynamically stable in ZB structure.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 95353-95359 ◽  
Author(s):  
D. P. Rai ◽  
A. Shankar ◽  
Sandeep Sandeep ◽  
M. P. Ghimire ◽  
R. Khenata ◽  
...  

A density functional theory (DFT) approach employing generalized gradient approximation (GGA) and the modified Becke Johnson (TB-mBJ) potential has been used to study the electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn.


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2017 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Diah Angraina Fitri

Intisari – Graphene adalah material yang terdiri dari atom-atom Carbon. Graphene sangat menarik untuk dibahas terkait pada pemanfaatan dalam bidang semikonduktor. Dalam penelitian ini, diamati struktur elektronik pada struktur kristal layer tunggal / monolayer pada graphene menggunakan perhitungan first-principles berbasis metode density functional theory (DFT) dengan menggunakan software PHASE/0. Dan juga  menggunakan  Generalized Gradient Approximation (GGA). Dalam penelitian ini, didapatkan bahwa struktur kristal satu layer / monolayer dari graphene tidak memiliki sifat celah pita energi (no bandgap). Sifat ini sangat berguna dalam aplikasi perangkat material dalam menyimpan energi. Kata Kunci – struktru elektronik, Graphene layer tunggal, Density Functional Theory (DFT), PHASE/0


2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


Sign in / Sign up

Export Citation Format

Share Document