Plasmon-enhanced polarization-selective filter based on multiple holes array filled with nonlinear medium

2014 ◽  
Vol 28 (16) ◽  
pp. 1450130 ◽  
Author(s):  
Jin Dai ◽  
Shihong Wang ◽  
Gang Song ◽  
Li Yu ◽  
Lulu Wang ◽  
...  

In this paper, a plasmon-enhanced polarization-selective filter is theoretically investigated in a structure composed of multiple holes array by filling it with nonlinear medium. The system combines the characteristics of selectable wavelength, enhanced transmission, polarization separation and output control by the intensity of incident light. As the incident light intensity approaches terawatt range, the optical bistability phenomenon appears only in y-polarization for one mode, while it appears in both x- and y-polarizations for the other mode, which is controlled by the coefficient of finesse F caused by the mirror reflectivity. Our findings demonstrate a feasible method for constructing nanoscale optical logical gates, filters, and all-optical switches; this method might be helpful for integrated optical circuits and on-chip optical interconnects.

2017 ◽  
Vol 31 (24) ◽  
pp. 1750146 ◽  
Author(s):  
Dan Liu ◽  
Lingxi Wu ◽  
Qiong Liu ◽  
Sa Yang ◽  
Renlong Zhou ◽  
...  

We theoretically investigate the characteristics of the resonant modes and the optical bistability (OB) effect in the proposed metal–insulator–metal plasmonic structure containing Kerr nonlinear medium. By using finite difference time domain (FDTD) method, it is found that the plasmon resonance modes can be modulated with the change of the height of metallic grating, the thickness of Kerr material layer and refractive index. We also study the characteristic of OB with the correspondingly detuning parameters. The designed plasmonic structure can be potentially applied to projecting SPP-based nonlinear optical devices in integrated optical circuits.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Cong Chen ◽  
Jiajia Mi ◽  
Panpan Chen ◽  
Xiang Du ◽  
Jianxin Xi ◽  
...  

With the rapid development of on-chip optics, integrated optical devices with better performance are desirable. Waveguide couplers are the typical integrated optical devices, allowing for the fast transmission and conversion of optical signals in a broad working band. However, traditional waveguide couplers are limited by the narrow operation band to couple the spatial light into the chip and the fixed unidirectional transmission of light flow. Furthermore, most of the couplers only realize unidirectional transmission under the illumination of the linear polarized light. In this work, a broadband polarization directional coupler based on a metallic catenary antenna integrated on a silicon-on-insulator (SOI) waveguide has been designed and demonstrated under the illumination of the circularly polarized light. By applying the genetic algorithm to optimize the multiple widths of the metallic catenary antenna, the numerical simulation results show that the extinction ratio of the coupler can be maintained larger than 18 dB in a wide operation band of 300 nm (from 1400 to 1700 nm). Moreover, the coupler can couple the spatial beam into the plane and transmit in the opposite direction by modulating the rotation direction of the incident light. The broadband polarization directional coupler might have great potential in integrated optoelectronic devices and on-chip optical devices.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012037
Author(s):  
L L Doskolovich ◽  
E A Bezus ◽  
D A Bykov

Abstract We propose and theoretically and numerically investigate integrated high-contrast diffraction gratings for surface electromagnetic waves. We consider two platforms for the on-chip gratings: surface plasmon-polaritons propagating along metal-dielectric interfaces and Bloch surface waves propagating along interfaces of photonic crystals. We demonstrate that the optical properties of the studied integrated gratings are qualitatively close to the ones of the conventional high-contrast diffraction gratings. If the “parasitic” out-of-plane scattering is suppressed, the reflectance and transmittance of the on-chip gratings are not only qualitatively, but also quantitatively close to the corresponding values of the conventional “free-space” gratings. The obtained results may find application in novel integrated optical circuits.


2021 ◽  
Author(s):  
Han Ye ◽  
Yanrong Wang ◽  
Shuhe Zhang ◽  
Danshi Wang ◽  
Yumin Liu ◽  
...  

Precise manipulation of mode order in silicon waveguide plays a fundamental role in the on-chip all-optical interconnections and is still a tough task in design when the functional region is...


1992 ◽  
Vol 45 (3) ◽  
pp. 1919-1923 ◽  
Author(s):  
Barry C. Sanders ◽  
Gerard J. Milburn

2014 ◽  
Vol 28 (04) ◽  
pp. 1450025 ◽  
Author(s):  
XIANKUN YAO

In this paper, we have numerically investigated a novel kind of ultra-compact wavelength demultiplexing (WDM) in high-confined metal–insulator–metal (MIM) plasmonic waveguides. It is found that the drop transmission efficiency of the filtering cavity can be strongly enhanced by introducing a side-coupled cavity in the MIM waveguide. The theoretical analysis is verified by the finite-difference time-domain simulations. Through cascading the filtering units, a highly effective triple-wavelength demultiplexer is proposed by selecting the specific separation between the two coupled cavities of filtering units. Our results may find potential applications for the nanoscale WDM systems in highly integrated optical circuits and networks.


Sign in / Sign up

Export Citation Format

Share Document