Optical bistability effect in SPP-based metallic grating containing Kerr nonlinear medium

2017 ◽  
Vol 31 (24) ◽  
pp. 1750146 ◽  
Author(s):  
Dan Liu ◽  
Lingxi Wu ◽  
Qiong Liu ◽  
Sa Yang ◽  
Renlong Zhou ◽  
...  

We theoretically investigate the characteristics of the resonant modes and the optical bistability (OB) effect in the proposed metal–insulator–metal plasmonic structure containing Kerr nonlinear medium. By using finite difference time domain (FDTD) method, it is found that the plasmon resonance modes can be modulated with the change of the height of metallic grating, the thickness of Kerr material layer and refractive index. We also study the characteristic of OB with the correspondingly detuning parameters. The designed plasmonic structure can be potentially applied to projecting SPP-based nonlinear optical devices in integrated optical circuits.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiva Khani ◽  
Ali Farmani ◽  
Ali Mir

AbstractReconfigurable and scalable plasmonics demultiplexers have attracted increasing attention due to its potential applications in the nanophotonics. Therefore, here, a novel method to design compact plasmonic wavelength demultiplexers (DEMUXes) is proposed. The designed structures (two, four, and six-channel DEMUXes) consist of symmetrical rectangular resonators (RRs) incorporating metal nano-rod defects (NRDs). In the designed structures, the RRs are laterally coupled to metal–insulator-metal (MIM) waveguides. The wavelengths of the output channels depend on the numbers and radii of the metal NRDs in the RRs. The results obtained from various device geometries, with either a single or multiple output ports, are performed utilizing a single structure, showing real reconfigurability. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. The metal and insulator used for the realization of the proposed DEMUXes are silver and air, respectively. The silver’s permittivity is characterized by the well-known Drude model. The basic plasmonic filter which is used to design plasmonic DEMUXes is a single-mode filter. A single-mode filter is easier to cope with in circuits with higher complexity such as DEMUXes. Also, different structural parameters of the basic filter are swept and their effects on the filter’s frequency response are presented, to provide a better physical insight. Taking into account the compact sizes of the proposed DEMUXes (considering the six-channel DEMUX), they can be used in integrated optical circuits for optical communication purposes.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450025 ◽  
Author(s):  
XIANKUN YAO

In this paper, we have numerically investigated a novel kind of ultra-compact wavelength demultiplexing (WDM) in high-confined metal–insulator–metal (MIM) plasmonic waveguides. It is found that the drop transmission efficiency of the filtering cavity can be strongly enhanced by introducing a side-coupled cavity in the MIM waveguide. The theoretical analysis is verified by the finite-difference time-domain simulations. Through cascading the filtering units, a highly effective triple-wavelength demultiplexer is proposed by selecting the specific separation between the two coupled cavities of filtering units. Our results may find potential applications for the nanoscale WDM systems in highly integrated optical circuits and networks.


2011 ◽  
Vol 50 (27) ◽  
pp. 5287 ◽  
Author(s):  
Guoxi Wang ◽  
Hua Lu ◽  
Xueming Liu ◽  
Yongkang Gong ◽  
Leiran Wang

2014 ◽  
Vol 28 (16) ◽  
pp. 1450130 ◽  
Author(s):  
Jin Dai ◽  
Shihong Wang ◽  
Gang Song ◽  
Li Yu ◽  
Lulu Wang ◽  
...  

In this paper, a plasmon-enhanced polarization-selective filter is theoretically investigated in a structure composed of multiple holes array by filling it with nonlinear medium. The system combines the characteristics of selectable wavelength, enhanced transmission, polarization separation and output control by the intensity of incident light. As the incident light intensity approaches terawatt range, the optical bistability phenomenon appears only in y-polarization for one mode, while it appears in both x- and y-polarizations for the other mode, which is controlled by the coefficient of finesse F caused by the mirror reflectivity. Our findings demonstrate a feasible method for constructing nanoscale optical logical gates, filters, and all-optical switches; this method might be helpful for integrated optical circuits and on-chip optical interconnects.


2014 ◽  
Vol 28 (23) ◽  
pp. 1450188 ◽  
Author(s):  
Gaoyan Duan ◽  
Peilin Lang ◽  
Lulu Wang ◽  
Li Yu ◽  
Jinghua Xiao

In this paper, we show the simulation of a plasmonic band-pass filter which consists of two surface plasmon polaritons (SPPs) waveguides and a resonator in metal–insulator–metal (MIM) structure. The resonator is formed by two square rings and a patch between them. The patch is a tiny rectangle cavity in order to transfer the SPPs from one ring to the other. The finite element method (FEM) method is employed in simulation. The results show that the dual-ring resonator performs better than a single ring does. The 3 dB bandwidth near the peak wavelength λ = 1054 nm is merely 31.7 nm. The resonant wavelength can be shifted by changing the side length of the square ring. This narrow band-pass filter is easy to fabricate and has potential applications in future integrated optical circuits.


2016 ◽  
Vol 30 (31) ◽  
pp. 1650376
Author(s):  
Fang Chen ◽  
Yiping Xu

A tunable power splitter based on metal-dielectric metal (MDM) waveguide coupled with rectangle cavity with Kerr nonlinear material is proposed. The power splitter properties are simulated by the finite-difference time-domain (FDTD) method [Y. H. Guo et al., Opt. Express 19 (2011) 13831–13838]. Simple theoretically analysis and numerically calculation demonstrate that the waveguide-rectangle cavity coupled system performs a tunable plasmonic power splitter. Additionally, the output power ratio can be efficiency tuned by varying the control light intensity. Results obtained by the coupled mode theory are consistent with those from the FDTD simulation. The plasmonic splitter may become a choice for the highly integrated optical circuits.


2019 ◽  
Vol 9 (4) ◽  
pp. 644
Author(s):  
Xue-Shi Li ◽  
Naixing Feng ◽  
Yuan-Mei Xu ◽  
Liang-Lun Cheng ◽  
Qing Liu

A tunable demultiplexer with three output channels infiltrated by liquid crystal (LC) is presented, which is based on a metal-insulator-metal (MIM) waveguide. The operating frequencies of the three output channels can be tuned simultaneously at will by changing the external bias electric field applied to the LC. By analyzing the Fabry-Pérot (FP) resonance modes of the finite-length MIM waveguide both theoretically and numerically, the locations of the three channels are delicately determined to achieve the best demultiplexing effects. Terahertz (THz) signals input from the main channel can be demultiplexed by channels 1, 2 and 3 at 0.7135 THz, 1.068 THz and 1.429 THz, respectively. By applying an external electric field to alter the tilt angle of the infiltrating LC material, the operating frequencies of channels 1, 2 and 3 can be relatively shifted up to 12.3%, 9.6% and 9.7%, respectively. The designed demultiplexer can not only provide a flexible means to demultiplex signals but also tune operating bands of output channels at the same time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moein Shayegannia ◽  
Arthur O. Montazeri ◽  
Katelyn Dixon ◽  
Rajiv Prinja ◽  
Nastaran Kazemi-Zanjani ◽  
...  

AbstractWe delineate the four principal surface plasmon polariton coupling and interaction mechanisms in subwavelength gratings, and demonstrate their significant roles in shaping the optical response of plasmonic gratings. Within the framework of width-graded metal–insulator-metal nano-gratings, electromagnetic field confinement and wave guiding result in multiwavelength light localization provided conditions of adiabatic mode transformation are satisfied. The field is enhanced further through fine tuning of the groove-width (w), groove-depth (L) and groove-to-groove-separation (d). By juxtaposing the resonance modes of width-graded and non-graded gratings and defining the adiabaticity condition, we demonstrate the criticality of w and d in achieving adiabatic mode transformation among the grooves. We observe that the resonant wavelength of a graded grating corresponds to the properties of a single groove when the grooves are adiabatically coupled. We show that L plays an important function in defining the span of localized wavelengths. Specifically, we show that multiwavelength resonant modes with intensity enhancement exceeding three orders of magnitude are possible with w < 30 nm and 300 nm < d < 900 nm for a range of fixed values of L. This study presents a novel paradigm of deep-subwavelength adiabatically-coupled width-graded gratings—illustrating its versatility in design, hence its viability for applications ranging from surface enhanced Raman spectroscopy to multispectral imaging.


2021 ◽  
Author(s):  
Zicong Guo ◽  
Kunhua Wen ◽  
Yuwen Qin ◽  
Yihong Fang ◽  
Zhengfeng Li ◽  
...  

AbstractIn this paper, a sub-wavelength metal-insulator-metal (MIM) waveguide structure is proposed by using a cross-shape rectangular cavity, of which wings are coupled with two rectangular cavities. Firstly, a cross-shape rectangular cavity is placed between the input and output MIM waveguides. According to the mutual interference between bright and dark modes, three Fano resonant peaks are generated. Secondly, by adding a rectangular cavity on the left wing of the cross shaped one, five asymmetric Fano resonance peaks are obtained. Thirdly, six asymmetric Fano resonance peaks are achieved after adding another cavity on the right wing. Finally, the finite-difference-time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT) are used to simulate and analyze the coupled plasmonic resonant system, respectively. The highest sensitivity of 1 000nm/RIU is achieved.


Sign in / Sign up

Export Citation Format

Share Document