Applications of the modified Rydberg–Vinet equation-of-state to the lower mantle and core

2016 ◽  
Vol 30 (04) ◽  
pp. 1650015
Author(s):  
Zheng-Hua Fang

A modified Rydberg–Vinet equation-of-state (mRV EOS) with an arbitrary nonzero-pressure reference point, as is derived strictly from the related Rydberg potential, has been applied to the mantle and the core. The tests and comparisons demonstrate that mRV EOS is superior to the reciprocal [Formula: see text]-primed equation [see F. D. Stacey and P. M. Davis, Phys. Earth Planet. Inter. 142 (2004) 137] not only because of its higher fitting accuracy but also because it has fewer fitting parameters and is easier to use.

2017 ◽  
Vol 599 ◽  
pp. A119 ◽  
Author(s):  
J. L. Zdunik ◽  
M. Fortin ◽  
P. Haensel

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


1966 ◽  
Vol 44 (11) ◽  
pp. 2553-2594 ◽  
Author(s):  
W. David Arnett

The behavior of a massive star during its final catastrophic stages of evolution has been investigated theoretically, with particular emphasis upon the effect of electron-type neutrino interactions. The methods of numerical hydrodynamics, with coupled energy transfer in the diffusion approximation, were used. In this respect, this investigation differs from the work of Colgate and White (1964) in which a "neutrino deposition" approximation procedure was used. Gravitational collapse initiated by electron capture and by thermal disintegration of nuclei in the stellar center is examined, and the subsequent behavior does not depend sensitively upon which process causes the collapse.As the density and temperature of the collapsing stellar core increase, the material becomes opaque to electron-type neutrinos and energy is transferred by these neutrinos to regions of the star less tightly bound by gravity. Ejection of the outer layers of the star can result. This phenomenon has been identified with supernovae.Uncertainty concerning the equation of state of a hot, dense nucleon gas causes uncertainty in the temperature of the collapsing matter. This affects the rate of energy transfer by electron-type neutrinos and the rate of energy lost to the star by muon-type neutrinos.The effects of general relativity do not appear to become important in the core until after the ejection of the outer layers.


2014 ◽  
Vol 1046 ◽  
pp. 76-79
Author(s):  
Xiu Fang Chen

In this paper, the thermal equation of state (EOS) of (Mg0.92, Fe0.08)SiO3is computed by Birch-Murnaghan and Mie-Grüneisen-Debye equations and the related parameters are also analyzed. The value of and has little effect on EOS of (Mg0.92, Fe0.08)SiO3perovskite. The effect of EOS of (Mg0.92, Fe0.08)SiO3perovskite is mainly from the temperature under high pressure. The temperature is higher; the deviation of EOS relative to the PREM model is bigger. The thermal EOS complies with PREM model at T=2000K. The thermal pressure of (Mg0.92, Fe0.08)SiO3perovskite a constant only related to temperature at the lower mantle conditions. At the same time, the EOS of (Mg0.92, Fe0.08)SiO3perovskite is insensitive to the data of and at T=2000K, but when and the thermal EOS is more agreement with PREM model. That is to say, when the value of the and is in the range of 253~273 GPa and 3.69~4.23, (Mg0.92, Fe0.08)SiO3is the perovskite phase, and (Mg0.92, Fe0.08)SiO3perovskite structure remains stable at the mantle conditions.


2004 ◽  
Vol 222 (2) ◽  
pp. 501-516 ◽  
Author(s):  
M.J. Walter ◽  
A. Kubo ◽  
T. Yoshino ◽  
J. Brodholt ◽  
K.T. Koga ◽  
...  

1991 ◽  
Vol 96 (B11) ◽  
pp. 18011 ◽  
Author(s):  
James A. Tyburczy ◽  
Thomas S. Duffy ◽  
Thomas J. Ahrens ◽  
Manfred A. Lange

Sign in / Sign up

Export Citation Format

Share Document