scholarly journals GRAVITATIONAL COLLAPSE AND WEAK INTERACTIONS

1966 ◽  
Vol 44 (11) ◽  
pp. 2553-2594 ◽  
Author(s):  
W. David Arnett

The behavior of a massive star during its final catastrophic stages of evolution has been investigated theoretically, with particular emphasis upon the effect of electron-type neutrino interactions. The methods of numerical hydrodynamics, with coupled energy transfer in the diffusion approximation, were used. In this respect, this investigation differs from the work of Colgate and White (1964) in which a "neutrino deposition" approximation procedure was used. Gravitational collapse initiated by electron capture and by thermal disintegration of nuclei in the stellar center is examined, and the subsequent behavior does not depend sensitively upon which process causes the collapse.As the density and temperature of the collapsing stellar core increase, the material becomes opaque to electron-type neutrinos and energy is transferred by these neutrinos to regions of the star less tightly bound by gravity. Ejection of the outer layers of the star can result. This phenomenon has been identified with supernovae.Uncertainty concerning the equation of state of a hot, dense nucleon gas causes uncertainty in the temperature of the collapsing matter. This affects the rate of energy transfer by electron-type neutrinos and the rate of energy lost to the star by muon-type neutrinos.The effects of general relativity do not appear to become important in the core until after the ejection of the outer layers.

1988 ◽  
Vol 108 ◽  
pp. 417-419
Author(s):  
N. Sack ◽  
I. Lichtenstadt

The collapse of the iron core of massive stars ( M ≥ 8 MO) is initiated by photodissociation and electron capture. The collapse of the inner core proceeds homologously until it is stopped by the stiffness of the equation of state (hereafter EOS) at nuclear density and it stops or rebounds. A shock forms at the edge of homology. The initial strength of the shock increases with the velocity difference between the inner and outer cores, i.e. it increases with a larger rebound of the inner core. The uniterrupted propagation of this prompt shock through the remainder of the core to the stellar mantle, where it can deliver enough energy to blow off the loosely bound outer layers, has long been proposed as the mechanism of type II supernovae explosions. However most authors did not get an explosion as a result of the prompt mechanism. Recently Baron et al. (1985) reported that the combination of General Relativity (GR) with a relatively soft EOS at nuclear densities leads to a much greater blow off than they got with Newtonian hydrodynamics. In order to see where purely hydrodynamical effects are important, namely for what EOS the GR outburst is greater than the Newtonian, we did a set of pure hydrodynamical adiabatic calculations (complete neutrino trapping) with different EOS above nuclear densities, turning the GR terms on and off. Neutrino leakage, which we do not incorporate, usually leads to harmful energy losses.


1976 ◽  
Vol 29 (5) ◽  
pp. 413 ◽  
Author(s):  
DP Mason

The vorticity propagation equation for a perfect fluid in general relativity is derived in a form which is the same as that of Maxwell's equation for the magnetic field four-vector in relativistic magnetohydrodynamics. Starting from this result, an expression for the change of vorticity during a gravitational collapse is obtained in terms of the spatial geometry, using a procedure similar to that introduced by Cocke (1966) in relativistic magnetohydrodynamics. It is assumed that the equation of state of the fluid is p = 1Xp" where IX is a constant and p, is the total proper energy density. If t < IX :s;; 1, it is found that the vorticity tends to zero during an isotropic collapse, in agreement with a result obtained previously by Ellis (1973) using a different procedure. Nonisotropic collapses are also considered. The dynamical importance of vorticity in a gravitational collapse is examined by considering the behaviour of w2 /p,.


Author(s):  
Flavio Mercati

Shape Dynamics (SD) is a field theory that describes gravity in a different way than General Relativity (GR): it assumes a preferred notion of simultaneity, and the dynamical content of the theory consists of conformal 3- geometries. SD coincides with (GR) in most situations, in particular in the experimentally well-tested regimes, but it departs from it in some strong-gravity situations, for example at cosmological singularities or upon gravitational collapse. This chapter provides a quick introduction to the theory and a brief description of its present state.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050068 ◽  
Author(s):  
Gauranga C. Samanta ◽  
Nisha Godani ◽  
Kazuharu Bamba

We have proposed a novel shape function on which the metric that models traversable wormholes is dependent. Using this shape function, the energy conditions, equation-of-state and anisotropy parameter are analyzed in [Formula: see text] gravity, [Formula: see text] gravity and general relativity. Furthermore, the consequences obtained with respect to these theories are compared. In addition, the existence of wormhole geometries is investigated.


2017 ◽  
Vol 599 ◽  
pp. A119 ◽  
Author(s):  
J. L. Zdunik ◽  
M. Fortin ◽  
P. Haensel

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043028
Author(s):  
M. Ángeles Pérez-García ◽  
Joseph Silk

Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However there is now a large consensus that an elusive sector of matter in the universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the universe.


2021 ◽  
pp. 2150101
Author(s):  
S. A. Paston

We study the possibility to explain the mystery of the dark matter (DM) through the transition from General Relativity to embedding gravity. This modification of gravity, which was proposed by Regge and Teitelboim, is based on a simple string-inspired geometrical principle: our spacetime is considered here as a four-dimensional surface in a flat bulk. We show that among the solutions of embedding gravity, there is a class of solutions equivalent to solutions of GR with an additional contribution of non-relativistic embedding matter, which can serve as cold DM. We prove the stability of such type of solutions and obtain an explicit form of the equations of motion of embedding matter in the non-relativistic limit. According to them, embedding matter turns out to have a certain self-interaction, which could be useful in the context of solving the core-cusp problem that appears in the [Formula: see text]CDM model.


2021 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.


Sign in / Sign up

Export Citation Format

Share Document