Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom

2016 ◽  
Vol 30 (05) ◽  
pp. 1650051 ◽  
Author(s):  
Lili Wang ◽  
Wenping Ma

In this paper, we propose a new controlled quantum secure direct communication (CQSDC) protocol with single photons in both polarization and spatial-mode degrees of freedom. Based on the defined local collective unitary operations, the sender’s secret messages can be transmitted directly to the receiver through encoding secret messages on the particles. Only with the help of the third side, the receiver can reconstruct the secret messages. Each single photon in two degrees of freedom can carry two bits of information, so the cost of our protocol is less than others using entangled qubits. Moreover, the security of our QSDC network protocol is discussed comprehensively. It is shown that our new CQSDC protocol cannot only defend the outsider eavesdroppers’ several sorts of attacks but also the inside attacks. Besides, our protocol is feasible since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yao-Hsin Chou ◽  
Yu-Ting Lin ◽  
Guo-Jyun Zeng ◽  
Fang-Jhu Lin ◽  
Chi-Yuan Chen

We propose a novel protocol for controlled bidirectional quantum secure communication based on anonlocal swapgate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on thenonlocal swapgate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages.


2015 ◽  
Vol 740 ◽  
pp. 857-860
Author(s):  
Xun Ru Yin

A three-party quantum secure direct communication protocol is proposed, in which the qubit transmission forms a closed loop. In this scheme, each party implements the corresponding unitary operations according to his secret bit value over the quantum channels. Then, by performing Bell measurements on the encoded particles, each party can extract the other two parties’ secret information simultaneously. Thus the three parties realize the direct exchange successfully.


Nanophotonics ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 427-439 ◽  
Author(s):  
Chunle Xiong ◽  
Bryn Bell ◽  
Benjamin J. Eggleton

AbstractSources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.


Sign in / Sign up

Export Citation Format

Share Document