The stability and electronic structure of lithium adsorbed in triplet form of (5.0) carbon nanotubes and (5.0) boron nitrogen nanotubes: Density functional theory studies

2016 ◽  
Vol 30 (20) ◽  
pp. 1650220 ◽  
Author(s):  
Ke Jing Li ◽  
Qing Yi Shao ◽  
Juan Zhang ◽  
Xin Hua Yao

Using density functional theory (DFT), we have investigated the stability and electronic structure of lithium (Li) adsorbed in triplet form of (5.0) carbon nanotubes (CNTs) and (5.0) boron nitrogen nanotubes (BNNTs). We have mainly found that three (5.0) tubes are covalently connected. The triplet form is an energetically stable semiconductor. Li atom can be chemically adsorbed in the triplet form of nanotubes (NTs). Meanwhile, upon the adsorption of Li, the triplet form convert into metal. Hence, the triplet form can improve reactivity and sensitivity of NTs to Li significantly.

2020 ◽  
pp. 2150007
Author(s):  
XIAOHUA YU ◽  
HUIXIA SUN ◽  
GUIRONG SHAO

Using plane-wave ultrasoft pseudopotential method based on first-principles density functional theory (DFT), the adsorption of Cs atom on As-rich GaAs(001)[Formula: see text]([Formula: see text]) reconstruction phase and Ga-rich GaAs(001)([Formula: see text]) reconstruction phase are investigated. The adsorption energy, work function, dipole moment, ionicity, band structure and density of state (DOS) of Cs adsorbed GaAs [Formula: see text]([Formula: see text]) and ([Formula: see text]) models are calculated. The stability and electronic structure of Cs adsorbed GaAs [Formula: see text]([Formula: see text]) and ([Formula: see text]) models are compared. Result shows that [Formula: see text]([Formula: see text]) phase is stable than the ([Formula: see text]) phase and after that Cs adsorption [Formula: see text]([Formula: see text]) phase is more beneficial for photoemission.


2016 ◽  
Vol 30 (13) ◽  
pp. 1650191 ◽  
Author(s):  
Ming-Yang Liu ◽  
Qing-Yuan Chen ◽  
Tai Ma ◽  
Yao He ◽  
Chao Cao

The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50–3.50 Å can obtain the metal–semiconductor–semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along [Formula: see text]–[Formula: see text] direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.


2015 ◽  
Vol 17 (29) ◽  
pp. 19039-19044 ◽  
Author(s):  
Zeyuan Ni ◽  
Emi Minamitani ◽  
Yasunobu Ando ◽  
Satoshi Watanabe

For the first time by using the ab initio density functional theory, the stability and electronic structures of germanene on monolayer GaS, GaSe, GaTe and InSe have been investigated.


2016 ◽  
Vol 18 (31) ◽  
pp. 21746-21759 ◽  
Author(s):  
Turbasu Sengupta ◽  
Sourav Pal

The stability and electronic structure of radical attached aluminum nanoclusters are investigated using density functional theory (DFT). A comparison of thermodynamic stability and other related factors with ligated clusters is also included.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


Sign in / Sign up

Export Citation Format

Share Document