Rational solutions and lump solutions to the (3+1)-dimensional Mel’nikov equation

2019 ◽  
Vol 34 (03) ◽  
pp. 2050033 ◽  
Author(s):  
Xuelin Yong ◽  
Xiaoyu Li ◽  
Yehui Huang ◽  
Wen-Xiu Ma ◽  
Yong Liu

In this paper, explicit representation of general rational solutions for the (3[Formula: see text]+[Formula: see text]1)-dimensional Mel’nikov equation is derived by employing the Hirota bilinear method. It is obtained in terms of determinants whose matrix elements satisfy some differential and difference relations. By selecting special value of the parameters involved, the first-order and second-order lump solutions are given and their dynamic characteristics are illustrated by two- and three-dimensional figures.

2021 ◽  
pp. 2150437
Author(s):  
Liyuan Ding ◽  
Wen-Xiu Ma ◽  
Yehui Huang

A (2+1)-dimensional generalized Kadomtsev–Petviashvili–Ito equation is introduced. Upon adding some second-order derivative terms, its various lump solutions are explicitly constructed by utilizing the Hirota bilinear method and calculated through the symbolic computation system Maple. Furthermore, two specific lump solutions are obtained with particular choices of the parameters and their dynamical behaviors are analyzed through three-dimensional plots and contour plots.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2021 ◽  
Author(s):  
Hongcai Ma ◽  
Shupan Yue ◽  
Yidan Gao ◽  
Aiping Deng

Abstract Exact solutions of a new (2+1)-dimensional nonlinear evolution equation are studied. Through the Hirota bilinear method, the test function method and the improved tanh-coth and tah-cot method, with the assisstance of symbolic operations, one can obtain the lump solutions, multi lump solutions and more soliton solutions. Finally, by determining different parameters, we draw the three-dimensional plots and density plots at different times.


2017 ◽  
Vol 72 (7) ◽  
pp. 609-615 ◽  
Author(s):  
Yongkang Shi

AbstractGeneral line rogue waves in the Mel’nikov equation are derived via the Hirota bilinear method, which are given in terms of determinants whose matrix elements have plain algebraic expressions. It is shown that fundamental rogue waves are line rogue waves, which arise from the constant background with a line profile and then disappear into the constant background again. By means of the regulation of free parameters, two subclass of nonfundamental rogue waves are generated, which are called as multirogue waves and higher-order rogue waves. The multirogue waves consist of several fundamental line rogue waves, which arise from the constant background and then decay back to the constant background. The higher-order rogue waves start from a localised lump and retreat back to it. The dynamical behaviours of these line rogue waves are demonstrated by the density and the three-dimensional figures.


2017 ◽  
Vol 72 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Ji-Guang Rao ◽  
Yao-Bin Liu ◽  
Chao Qian ◽  
Jing-Song He

AbstractThe rational and semirational solutions in the Boussinesq equation are obtained by the Hirota bilinear method and long wave limit. It is shown that the rational solutions contain dark and bright rogue waves, and their typical dynamics are analysed and illustrated. The semirational solutions possess a range of hybrid solutions, and the hybrid of rogue wave and solitons are demonstrated in detail by the three-dimensional figures. Under certain parameter conditions, a new kind of semirational solutions consisted of rogue waves, breathers and solitons is discovered, which describes the dynamics of the rogue waves interacting with the breathers and solitons at the same time.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dan Su ◽  
Wen-Xiu Ma ◽  
Xuelin Yong ◽  
Yehui Huang

Explicit rational-exponential solutions for the Kadomtsev-Petviashvili-II equation with a self-consistent source (KPIIESCS) are studied by the Hirota bilinear method. One typical feature for this hybrid type of solutions is that they contain two arbitrary functions of time variable t which affect the amplitudes and propagation trajectories. The dynamics of solutions are demonstrated by the three-dimensional figures. The method used here is quite general and can be applied to other equations with self-content sources.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950038 ◽  
Author(s):  
Solomon Manukure ◽  
Yuan Zhou

We introduce a new (2+1)-dimensional equation by modifying the potential form of the Calogero–Bogoyavlenskii–Schiff (CBS) equation. By applying the Hirota bilinear method, we construct explicit lump solutions to this new equation and establish necessary and sufficient conditions that guarantee that the solutions are analytic and rationally localized in all directions in space. We also depict the evolution of the profiles of some selected lump solutions with three-dimensional and contour plots. It is immediately observed that the lump solutions generated are solitary wave type solutions as is the case with the KP equation.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zhonglong Zhao ◽  
Lingchao He ◽  
Yubin Gao

In this paper, the bilinear method is employed to investigate the rogue wave solutions and the rogue type multiple lump wave solutions of the (2+1)-dimensional Benjamin-Ono equation. Two theorems for constructing rogue wave solutions are proposed with the aid of a variable transformation. Four kinds of rogue wave solutions are obtained by means of Theorem 1. In Theorem 2, three polynomial functions are used to derive multiple lump wave solutions. The 3-lump solutions, 6-lump solutions, and 8-lump solutions are presented, respectively. The 3-lump wave has a “triangular” structure. The centers of the 6-lump wave form a pentagram around a single lump wave. The 8-lump wave consists of a set of seven first order rogue waves and one second order rogue wave as the center. The multiple lump wave develops into low order rogue wave as parameters decline to zero. The method presented in this paper provides a uniform method for investigating high order rational solutions. All the results are useful in explaining high dimensional dynamical phenomena of the (2+1)-dimensional Benjamin-Ono equation.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yong Zhang ◽  
Shili Sun ◽  
Huanhe Dong

The rational solutions, semirational solutions, and their interactions to the (3+1)-dimensional Jimbo-Miwa equation are obtained by the Hirota bilinear method and long wave limit. The hybrid solutions contain rogue wave, lump solution, and the breather solution, in which the breathers which are manifested as growing and decaying periodic line waves show different dynamics in different planes. Rogue waves are localized in time and are obtained theoretically as a long wave limit of breathers with indefinitely larger periods; they arise from a constant background at t≪0 and then disappear in the constant background when time goes on. More importantly, the interactions between some hybrid solutions are demonstrated in detail by the three-dimensional figures, such as hybrid solution between the stripe soliton and breather and hybrid solution between stripe soliton and lump solution.


2019 ◽  
Vol 23 (4) ◽  
pp. 2437-2445 ◽  
Author(s):  
Xiaoqing Gao ◽  
Sudao Bilige ◽  
Jianqing Lü ◽  
Yuexing Bai ◽  
Runfa Zhang ◽  
...  

In this paper, abundant lump solutions and two types of interaction solutions of the (3+1)-D Kadomtsev-Petviashvili equation are obtained by the Hirota bilinear method. Some contour plots with different determinant values are sequentially given to show that the corresponding lump solution tends to zero when the deter-minant approaches to zero. The interaction solutions with special parameters are plotted to elucidate the solution properties.


Sign in / Sign up

Export Citation Format

Share Document