Nonclassical properties and entanglement generation in an optical cavity containing two atomic Bose–Einstein condensates
We consider the model of a weakly driven optical cavity containing two clouds of atomic Bose–Einstein condensates (BECs). Nonclassical photon correlations and correlations between the two atomic BECs are investigated under different cavity conditions including strong atom-field coupling and bad cavity regime. We show that the nonlinear interatom collisional interactions in BEC leads to a significant loss of cavity light coherence. Various types of nonclassical properties are investigated such as sub-Poissonian statistics, antibunching and entanglement. We show that the entanglement can be generated between BECs and the cavity field. The time evolution of entanglement is also numerically studied.