hubble radius
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. We do so by defining an appropriate Helmholtz free energy which when extremized relative to a key parameter (the Hubble radius L) provides a scaling formula for the entropy with the Hubble radius (an exponent r used in the text). We deduce that the CKN bound is one possible solution to this extremization problem (with r = 3/2 ), but there are others consistent with r = 2. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.



Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. We do so by defining an appropriate Helmholtz free energy which when extremized relative to a key parameter (the Hubble radius L) provides a scaling formula for the entropy with the Hubble radius (an exponent r used in the text). We deduce that the CKN bound is one possible solution to this extremization problem (with r=3/2), but there are others consistent with r=2. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.



Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Ronaldo C. Batista

We review dark energy models that can present non-negligible fluctuations on scales smaller than Hubble radius. Both linear and nonlinear evolutions of dark energy fluctuations are discussed. The linear evolution has a well-established framework, based on linear perturbation theory in General Relativity, and is well studied and implemented in numerical codes. We highlight the main results from linear theory to explain how dark energy perturbations become important on the scales of interest for structure formation. Next, we review some attempts to understand the impact of clustering dark energy models in the nonlinear regime, usually based on generalizations of the Spherical Collapse Model. We critically discuss the proposed generalizations of the Spherical Collapse Model that can treat clustering dark energy models and their shortcomings. Proposed implementations of clustering dark energy models in halo mass functions are reviewed. We also discuss some recent numerical simulations capable of treating dark energy fluctuations. Finally, we summarize the observational predictions based on these models.



2021 ◽  
pp. 2150160
Author(s):  
N. Sarath ◽  
Titus K. Mathew

Decaying vacuum models are a class of models that incorporate a time-dependent vacuum energy density that can explain the entire evolution of the universe in a unified framework. A general solution to the Friedmann equation is obtained by considering vacuum energy density as a function of the Hubble parameter. We have obtained the asymptotic solution by choosing the equation of state for matter, [Formula: see text] and radiation, [Formula: see text]. Finite boundaries in the early and late de Sitter epoch are defined by considering the evolution of primordial perturbation wavelength. An epoch invariant number [Formula: see text] determines the number of primordial perturbation modes that cross the Hubble radius during each epoch.



2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.



2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Alon E. Faraggi ◽  
Marco Matone

AbstractThe geometrical formulation of the quantum Hamilton–Jacobi theory shows that the quantum potential is never trivial, so that it plays the rôle of intrinsic energy. Such a key property selects the Wheeler–DeWitt (WDW) quantum potential $$Q[g_{jk}]$$ Q [ g jk ] as the natural candidate for the dark energy. This leads to the WDW Hamilton–Jacobi equation with a vanishing kinetic term, and with the identification $$\begin{aligned} \Lambda =-\frac{\kappa ^2}{\sqrt{{\bar{g}}}}Q[g_{jk}]. \end{aligned}$$ Λ = - κ 2 g ¯ Q [ g jk ] . This shows that the cosmological constant is a quantum correction of the Einstein tensor, reminiscent of the von Weizsäcker correction to the kinetic term of the Thomas–Fermi theory. The quantum potential also defines the Madelung pressure tensor. The geometrical origin of the vacuum energy density, a strictly non-perturbative phenomenon, provides strong evidence that it is due to a graviton condensate. Time independence of the regularized WDW equation suggests that the ratio between the Planck length and the Hubble radius may be a time constant, providing an infrared/ultraviolet duality. We speculate that such a duality is related to the local to global geometry theorems for constant curvatures, showing that understanding the universe geometry is crucial for a formulation of Quantum Gravity.



2020 ◽  
Vol 35 (14) ◽  
pp. 2050107 ◽  
Author(s):  
S. Ghaffari ◽  
E. Sadri ◽  
A. H. Ziaie

We study the cosmological consequences of interacting Tsallis holographic dark energy model in the framework of the fractal universe in which the Hubble radius is considered as the IR cutoff. We derive the equation of state (EoS) parameter, deceleration parameter and the evolution equation for the Tsallis holographic dark energy density parameter. Our study shows that this model can describe the current accelerating universe in both non-interacting and interacting scenarios, and also a transition occurs from the deceleration phase to the accelerated phase at the late-time. Finally, we check the compatibility of free parameters of the model with the latest observational results by using the Pantheon supernovae data, eBOSS, 6df, BOSS DR12, CMB Planck 2015, Gamma-Ray Burst.



2019 ◽  
Vol 34 (23) ◽  
pp. 1950185 ◽  
Author(s):  
Massimo Giovannini

The degree of second-order coherence of the relic gravitons produced from the vacuum is super-Poissonian and larger than in the case of a chaotic source characterized by a Bose–Einstein distribution. If the initial state does not minimize the tensor Hamiltonian and has a dispersion smaller than its averaged multiplicity, the overall statistics is by definition sub-Poissonian. Depending on the nature of the sub-Poissonian initial state, the final degree of second-order coherence of the quanta produced by stimulated emission may diminish (possibly even below the characteristic value of a chaotic source) but it always remains larger than one (i.e. super-Poissonian). When the initial statistics is Poissonian (like in the case of a coherent state or for a mixed state weighted by a Poisson distribution) the degree of second-order coherence of the produced gravitons is still super-Poissonian. Even though the quantum origin of the relic gravitons inside the Hubble radius can be effectively disambiguated by looking at the corresponding Hanbury Brown–Twiss correlations, the final distributions caused by different initial states maintain their super-Poissonian character which cannot be altered.



2019 ◽  
Vol 34 (15) ◽  
pp. 1950114 ◽  
Author(s):  
Rakesh Kabir ◽  
Amitabha Mukherjee ◽  
Daksh Lohiya

The end of inflation is connected to the standard cosmological scenario through reheating. During reheating, the inflaton oscillates around the minimum of the potential and thus decays into the daughter particles that populate the Universe at later times. Using cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time, we translate the constraint on the spectral index [Formula: see text] from Planck data to the constraint on the reheating scenario in the context of Kähler moduli inflation. We find that the equation of state parameter plays a crucial role in the reheating analysis, however the details of the one parameter potential are irrelevant if the analysis is done strictly within the slow-roll formalism. In addition, we extend the de facto analysis generally done only for the pivot scale to all the observable scales which crossed the Hubble radius during inflation, where we study how the maximum number of e-folds varies for different scales, and the effect of the equation of state and potential parameters.



2019 ◽  
Vol 97 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Marcos R.A. Arcodía ◽  
Luis Santiago Ridao ◽  
Mauricio Bellini

We study the emission of neutral massless (1, 2)ħ-spin bosons during power-law inflation using unified spinor field theory. We show that during inflation, gravitons and photons were emitted with wavelengths (on physical coordinates) that increase with the Hubble radius λPh ∼ a/H. The quantised action related to these bosons is calculated and determined to be a fraction of the Planck constant.



Sign in / Sign up

Export Citation Format

Share Document