General high-order breather, lump, and semi-rational solutions to the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation

2020 ◽  
pp. 2150057
Author(s):  
Xin-Mei Zhou ◽  
Shou-Fu Tian ◽  
Ling-Di Zhang ◽  
Tian-Tian Zhang

In this work, we investigate the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (gBK) equation. Based on its bilinear form, the [Formula: see text]th-order breather solutions of the gBK equation are successful given by taking appropriate parameters. Furthermore, the [Formula: see text]th-order lump solutions of the gBK equation are obtained via the long-wave limit method. In addition, the semi-rational solutions are generated to reveal the interaction between lump solutions, soliton solutions, and breather solutions.

2019 ◽  
Vol 33 (28) ◽  
pp. 1950350 ◽  
Author(s):  
Wei-Qi Peng ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang

In this work, we study a generalized (2[Formula: see text]+[Formula: see text]1)-dimensional asymmetrical Nizhnik–Novikov–Veselov (NNV) equation. Its Hirota bilinear form is constructed via the Bell polynomial. Based on the obtained bilinear form, the Nth-order breather waves are derived explicitly under certain parameter constraints. Moreover, we generate the nonsingular Nth-order lump waves through applying the long wave limit method. Additionally, we successfully present the semi-rational waves containing the combination of lump waves and single-soliton waves, the combination of lump waves and breather waves.


2019 ◽  
Vol 33 (22) ◽  
pp. 1950255 ◽  
Author(s):  
Wen-Tao Li ◽  
Zhao Zhang ◽  
Xiang-Yu Yang ◽  
Biao Li

In this paper, the (2+1)-dimensional fifth-order KdV equation is analytically investigated. By using Hirota’s bilinear method combined with perturbation expansion, the high-order breather solutions of the fifth-order KdV equation are generated. Then, the high-order lump solutions are also derived from the soliton solutions by a long-wave limit method and some suitable parameter constraints. Furthermore, we extend this method to obtain hybrid solutions by taking long-wave limit for partial soliton solutions. Finally, the dynamic behavior of these solutions is presented in the figures.


Author(s):  
Na Liu ◽  
Xinhua Tang ◽  
Weiwei Zhang

This paper is devoted to obtaining the multi-soliton solutions, high-order breather solutions and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by applying the Hirota bilinear method and the long-wave limit approach. Moreover, the interaction solutions are constructed by choosing appropriate value of parameters, which consist of four waves for lumps, breathers, rouges and solitons. Some dynamical characteristics for the obtained exact solutions are illustrated using figures.


2021 ◽  
pp. 2150422
Author(s):  
Mengqi Zheng ◽  
Maohua Li

In this paper, based on the Hirota bilinear method, the high-order breathers and interaction solutions between solitons and breathers of the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation are investigated. The lump and semi-rational solutions are obtained by applying the long wave limit of the [Formula: see text]-soliton solution. Two types of semi-rational solutions are derived by choosing specific parameters, which are the mixture of the lump solution and solitons, and the mixture of the lump solution and breathers. Furthermore, the time evolution diagram illustrate the dynamic behavior of these solutions.


2017 ◽  
Vol 31 (32) ◽  
pp. 1750298 ◽  
Author(s):  
Meidan Chen ◽  
Biao Li

Rational solutions and hybrid solutions from N-solitons are obtained by using the bilinear method and a long wave limit method. Line rogue waves and lumps in the (2[Formula: see text]+[Formula: see text]1)-dimensional nonlinear Schrödinger (NLS) equation are derived from two-solitons. Then from three-solitons, hybrid solutions between kink soliton with breathers, periodic line waves and lumps are derived. Interestingly, after the collision, the breathers are kept invariant, but the amplitudes of the periodic line waves and lumps change greatly. For the four-solitons, the solutions describe as breathers with breathers, line rogue waves or lumps. After the collision, breathers and lumps are kept invariant, but the line rogue wave has a great change.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850359 ◽  
Author(s):  
Wenhao Liu ◽  
Yufeng Zhang

In this paper, the traveling wave method is employed to investigate the one-soliton solutions to two different types of bright solutions for the generalized (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear-wave equation, primarily. In the following parts, we derive the breathers and rational solutions by using the Hirota bilinear method and long-wave limit. More specifically, we discuss the lump solution and rogue wave solution, in which their trajectory will be changed by varying the corresponding coefficient or coordinate axis. On the one hand, the breathers express the form of periodic line waves in different planes, on the other hand, rogue waves are localized in time.


2019 ◽  
Vol 34 (03) ◽  
pp. 2050037
Author(s):  
Yu-Pei Fan ◽  
Ai-Hua Chen

In this paper, by using the long wave limit method, we study lump solution and interactional solution of the (2[Formula: see text]+[Formula: see text]1)-dimensional generalized breaking soliton equation without using bilinear form. The moving properties of the lump solution, and the interactional properties of a lump and a solitary wave, are analyzed theoretically and graphically with asymptotic analysis.


2017 ◽  
Vol 72 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Ji-Guang Rao ◽  
Yao-Bin Liu ◽  
Chao Qian ◽  
Jing-Song He

AbstractThe rational and semirational solutions in the Boussinesq equation are obtained by the Hirota bilinear method and long wave limit. It is shown that the rational solutions contain dark and bright rogue waves, and their typical dynamics are analysed and illustrated. The semirational solutions possess a range of hybrid solutions, and the hybrid of rogue wave and solitons are demonstrated in detail by the three-dimensional figures. Under certain parameter conditions, a new kind of semirational solutions consisted of rogue waves, breathers and solitons is discovered, which describes the dynamics of the rogue waves interacting with the breathers and solitons at the same time.


2022 ◽  
Author(s):  
Ren Bo ◽  
Shi Kai-Zhong ◽  
Shou-Feng Shen ◽  
Wang Guo-Fang ◽  
Peng Jun-Da ◽  
...  

Abstract In this paper, we investigate the third-order nonlinear Schr\"{o}dinger equation which is used to describe the propagation of ultrashort pulses in the subpicosecond or femtosecond regime. Based on the independent transformation, the bilinear form of the third-order NLSE is constructed. The multiple soliton solutions are constructed by solving the bilinear form. The multi-order rogue waves and interaction between one-soliton and first-order rogue wave are obtained by the long wave limit in multi-solitons. The dynamics of the first-order rogue wave, second-order rogue wave and interaction between one-soliton and first-order rogue wave are presented by selecting the appropriate parameters. In particular parameters, the positions and the maximum of amplitude of rogue wave can be confirmed by the detail calculations.PACS numbers: 02.30.Ik, 05.45.Yv.


Sign in / Sign up

Export Citation Format

Share Document