The thermal properties of the mixed spin-1/2, 1, 3/2 Ising model on the Bethe lattice

2020 ◽  
pp. 2150079
Author(s):  
J. Kple ◽  
E. Albayrak ◽  
F. Hontinfinde

A triple mixed-spin Ising system defined on the Bethe lattice is numerically investigated by means of exact recursion relations (ERRs) calculations. The lattice is constituted by three types of magnetic atoms A, B, C with spins [Formula: see text], [Formula: see text], [Formula: see text] respectively arranged in the form ABCABC. The effects of bilinear exchange and crystal-field interactions as well as those of thermal fluctuations on the order parameters and phase diagrams are thoroughly studied and specified. First-order transitions and tricritical points are present for the coordination number [Formula: see text] whereas at [Formula: see text] they are absent. Global compensation phenomena are absent for the magnetic system. Instead, it is shown that it can only occur between the sublattice magnetizations B and C of the system. Several novel kinds of reentrance of the phase boundaries while varying the values of model parameters have been reported.

2021 ◽  
pp. 2150286
Author(s):  
Erhan Albayrak

The outcome of the random crystal field effects on the antiferromagnetic spin-1 Blume–Capel model and external magnetic field are examined on the Bethe Lattice in terms of exact recursion relations. It is assumed that the crystal field is either turned on or off randomly with probability [Formula: see text] and [Formula: see text], respectively. The phase diagrams are constructed from the thermal analysis of the order parameters with the coordination number [Formula: see text] which corresponds to honeycomb lattice. It is explored that the system goes both second- and first-order phase transitions, along with the reentrant behavior and a few critical points. The reentrant behavior is stronger for lower values of [Formula: see text] and disappears as [Formula: see text] gets closer to 1.0. The first-order lines are observed to be either linked to the tricritical points or decomposed. The critical end points and double critical points are also observed.


Open Physics ◽  
2013 ◽  
Vol 11 (11) ◽  
Author(s):  
Joël Kplé ◽  
Gabriel Avossevou ◽  
Félix Hontinfinde

AbstractTwo layered magnetic Bethe lattice with varying coordination number q is introduced and numerically studied via exact recursion relations within a pairwise approach. The system is influenced by competing interlayer and intralayer nearest-neighbour (NN) coupling interactions and also by the crystal and external magnetic fields. Cases where both layers are ferromagnetic or one is ferro and the other antiferromagnetic are considered. System configurations’ energy calculations are used to devise some ground state phase diagrams that have proven useful for the investigation of the very low temperature behaviour of the model. Analysis of the thermal behaviours of the total magnetization within the model parameters’ space yield interesting phase diagrams which display fascinating properties, in particular the presence of tricritical points. Increasing negative values of the crystal field strength stabilizes the disordered paramagnetic phase and sometimes gives rise to wavy transition lines.


2020 ◽  
Vol 34 (10) ◽  
pp. 2050087
Author(s):  
Erhan Albayrak

The Ising model with nearest- and next-nearest-neighbor (NNN) bilinear interactions is examined on the Bethe lattice (BL) in terms of exact recursion relations (ERR) when the external magnetic [Formula: see text] is turned on. The thermal variation of the magnetization belonging to the central spin is investigated to calculate the possible phase diagrams of the model for given coordination numbers. Different phase regions, ferromagnetic (FM), antiferromagnetic (AFM) and paramagnetic (PM), are discovered and the phase lines in terms of first-order or second-order phase transitions are calculated. These lines are found to be order–disorder or order–order phase transition lines. It is also found that they combine at some special points or terminate at some end points for appropriate values of the model parameters.


2019 ◽  
Vol 33 (11) ◽  
pp. 1950102
Author(s):  
Erhan Albayrak

The mixed spin-1/2 and spin-1 Blume–Capel model is studied with randomly alternated coordination numbers (CN) on the Bethe lattice (BL) by utilizing the exact recursion relations. Two different CNs are randomly distributed on the BL by using the standard–random (SR) approach. It is observed that this model presents first-order phase transitions and tricritical points for variations of CNs 3 and 4, even if these behaviors are not displayed for the regular mixed-spin on the BL. The phase diagrams are mapped by obtaining the phase transition temperatures of the first- and second-order on several planes.


2020 ◽  
Vol 34 (13) ◽  
pp. 2050129
Author(s):  
Erhan Albayrak

The A, B and C atoms with spin-1/2, spin-3/2 and spin-5/2 are joined together sequentially on the Bethe lattice in the form of ABCABC[Formula: see text] to simulate a molecule as a triple mixed-spin system. The spins are assumed to be interacting with only their nearest-neighbors via bilinear exchange interaction parameter in addition to crystal and external magnetic fields. The order-parameters are obtained in terms of exact recursion relations, then from the study of their thermal variations, the phase diagrams are calculated on the possible planes of our system. It is found that the model gives only second-order phase transitions in addition to the compensation temperatures.


2018 ◽  
Vol 32 (16) ◽  
pp. 1850177
Author(s):  
Erhan Albayrak

In this work, the ternary alloy (TA) of the form [Formula: see text] with spin-[Formula: see text], spin-2 and spin-[Formula: see text], respectively, is studied on the Bethe lattice in terms of exact recursion relations in the standard random approach. The bilinear interaction parameter [Formula: see text] is assumed to be ferromagnetic between the nearest-neighbor spins with spin-[Formula: see text] and spin-2, while [Formula: see text] is taken to be antiferromagnetic between spin-[Formula: see text] and spin-[Formula: see text]. The possible phase diagrams are obtained from the thermal analysis of the order parameters for the given coordination numbers z = 3,[Formula: see text]4,[Formula: see text]5 and 6. This analysis has also revealed that the model gives both second- and first-order phase transitions in addition to the compensation temperatures.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850226 ◽  
Author(s):  
Erhan Albayrak

The quaternary alloy (QA) is simulated on the Bethe lattice (BL) in the form of ABpCqDr and its phase diagrams are calculated by using the exact recursion relations (ERR) for the coordination number z = 3. The QA is designed on the BL by placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2), C (spin-5/2) or D (spin-1) atoms with probabilities p, q and r, respectively, on the even shells. A compact form of formulation for the QA is obtained in the standard-random approach which can easily be reduced to ternary alloy (TA) and mixed-spin models by the appropriate values of the random variables p, q and r. The phase diagrams are calculated on the temperature and ratio of bilinear interaction parameter planes for given values of probabilities.


2015 ◽  
Vol 29 (28) ◽  
pp. 1550194 ◽  
Author(s):  
M. Karimou ◽  
R. Yessoufou ◽  
F. Hontinfinde

Using the recursion equations technique, the influences of the single-ion anisotropies or crystal-fields interactions on the magnetic properties of the mixed spin-1 and spin-7/2 Blume-Capel (BC) Ising ferrimagnetic system are studied on the Bethe lattice (BL). The ground-state phase diagram is constructed, the thermal behaviors of the order-parameters and the free-energy are thoroughly investigated in order to characterize the nature of the phase transitions and to obtain the phase transition temperature. Then, the temperature phase diagrams are obtained in the case of equal crystal-field interactions on the ([Formula: see text] and [Formula: see text]) planes when q = 3, 4 and 6 and in the case of unequal crystal-fields interactions on the ([Formula: see text] and [Formula: see text]) and [Formula: see text] and [Formula: see text]) planes for selected values of [Formula: see text] and [Formula: see text] respectively when q = 3. The model shows first-order and second-order phase transitions, and where the lines are connected is the tricritical point. Besides the first-order and second-order phase transitions, the system also exhibits compensation temperatures depending on appropriate values of the crystal-fields interactions.


2018 ◽  
Vol 32 (27) ◽  
pp. 1850325 ◽  
Author(s):  
Erhan Albayrak

The mixed spin-1/2 and spin-3/2 Blume–Capel (BC) model is considered on the Bethe lattice (BL) with randomly changing coordination numbers (CN) and examined in terms of exact recursion relations. A couple of two different CNs are changed randomly on the shells of the BL in terms of a standard–random approach to obtain the phase diagrams on possible planes of the system parameters. It is found from the thermal analysis of the order-parameters that the model only gives the second-order phase transitions as in the regular mixed case. As the probability of having larger CN increases, the temperatures of the critical lines also increase as expected.


2021 ◽  
pp. 2150270
Author(s):  
Erhan Albayrak

The external random magnetic field [Formula: see text] with three nodes, i.e. acting up and down along the [Formula: see text]-axis and zero, effective on the spins in the Blume-Capel model is analyzed on the Bethe lattice in terms of the exact recursion relations. All the nodes are assumed to have the same probability, [Formula: see text], so that the model could give various kinds of phase transitions. As a mapping of the phase transitions, the phase diagrams are constructed on two different planes which present very rich and interesting phase diagrams. In addition to the second- and first-order phase transitions, a few critical points, reentrant and double reentrant behaviors are also observed.


Sign in / Sign up

Export Citation Format

Share Document