Design of Wireless Network on Chip with Priority-Based MAC

2019 ◽  
Vol 28 (08) ◽  
pp. 1950124 ◽  
Author(s):  
Yiming Ouyang ◽  
Yang Zhao ◽  
Kun Xing ◽  
Zhengfeng Huang ◽  
Huaguo Liang ◽  
...  

The wireless network on chip WiNoC introduces wireless links in the traditional network on chip (NoC), which reduces the network diameter and enables high-throughput, low-latency data communications. In addition, if wireless nodes can dynamically request data transmission, wireless bandwidth will be more effectively utilized. In order to implement a conflict-free, adaptive bandwidth allocation strategy, a priority-based dynamic media access control mechanism has been designed. In this work, a dynamic priority calculation method has been proposed based on the packets’ transmission time and the waiting time in the queue. Then, a priority calculating unit is designed to calculate the dynamic priority of the packet. Finally, the central control unit designed obtains the dynamic priority of the packets, and dynamically authorizes the use rights of the wireless medium according to the priority of the data packet. Simulation experiments show that the media access control mechanism proposed in this paper has significant improvements in throughput, delay, and power consumption performances compared with other mechanisms [S.Deb et al., Wireless NoC as interconnection backbone for multicore chips: promises and challenges, IEEE J. Emerg. Sel. Topics Circuits Syst. 2 (2012) 228–239].

2021 ◽  
Author(s):  
Ginno Millán

The foundation of a research project about a model of computer networks with media access control mechanism based on the IEEE standard 802.3-2005 is presented. The model draws from the theory of self-similar sets for establishing the impact level that the long-range-dependent temporary correlations have on the performance of such networks. A new method for the estimation of self-similar levels based on a variation of the Whittle estimator is postulated.


2021 ◽  
Author(s):  
Ginno Millán

The foundation of a research project about a model of computer networks with media access control mechanism based on the IEEE standard 802.3-2005 is presented. The model draws from the theory of self-similar sets for establishing the impact level that the long range temporary correlations have on the performance of such networks. A new method for the estimation of self-similar levels based on a variation of the Whittle estimator is postulated-


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lurong Jiang ◽  
Qiaoyu Xu ◽  
Hangyi Pan ◽  
Yanyun Dai ◽  
Jijun Tong

In wireless sensor networks, network security against virus propagation is one of the challenges with the applications. In severe cases, the network system may become paralyzed. In order to study the process of virus propagation in wireless sensor networks with the media access control mechanism, this paper uses the susceptible-infectious-removed (SIR) model to analyze the spreading process. It provides a theoretical basis for the development of virus immune mechanisms to solve network virus attack hidden dangers. The research shows that the media access control (MAC) mechanism in the wireless sensor network can inhibit the process of virus propagation, reduce the network virus propagating speed, and decrease the scale of infected nodes. The listen/sleep duty cycle of this mechanism will affect the suppression effect of virus propagation. The smaller the listen/sleep duty cycle, the stronger the suppression effect. Energy consumption has a peak value under specific infection probability. Meanwhile, it is also found that the spreading scale of the virus in wireless sensor networks can be effectively inhibited by the MAC mechanism.


Sign in / Sign up

Export Citation Format

Share Document