A High Throughput and Pipelined Implementation of the LUKS on FPGA

2019 ◽  
Vol 29 (05) ◽  
pp. 2050075
Author(s):  
Xiaochao Li ◽  
Kongcheng Wu ◽  
Qi Zhang ◽  
Shaoyu Lin ◽  
Yihui Chen ◽  
...  

The Linux Unified Key Setup (LUKS) is the standard key management scheme for the full disk encryption solution implemented in Linux-based operating systems. It is composed of PBKDF2, an anti-forensic splitter, and a cipher. In this paper, a new FPGA-based high-throughput and pipelined implementation of LUKS is presented. We design a four-stage pipelined SHA-1 module without the multiplexers between piecewise function and a total eight-stage pipelined PBKDF2 by reusing two hash results. Besides, we implement ST box-based AES decipher with BRAM resources, which improves the performance and leaves most of the slice resources to PBKDF2 architecture. By using the above techniques, we instantiate a high throughput LUKS co-processor in a Xilinx Zynq 7030 FPGA. Compared to the previous work of implementation of LUKS PBKDF2 with AES on FPGA, our design shows better improvement of the speed and efficiency by 16 times and 8 times, respectively. Our speed of LUKS key recovery is even faster than Nvidia GPU GTX480.

2013 ◽  
Vol 2 (2) ◽  
pp. 23-31
Author(s):  
Sufyan T. Faraj Al-janabi ◽  
Ali J. Dawood ◽  
Ekram H. Hassan

2010 ◽  
Vol 21 (3) ◽  
pp. 516-527 ◽  
Author(s):  
Ting YUAN ◽  
Jian-Qing MA ◽  
Yi-Ping ZHONG ◽  
Shi-Yong ZHANG

Author(s):  
Tong Chen ◽  
Lei Zhang ◽  
Kim-Kwang Raymond Choo ◽  
Rui Zhang ◽  
Xinyu Meng

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2962
Author(s):  
Xingda Chen ◽  
Margaret Lech ◽  
Liuping Wang

Security is one of the major concerns of the Internet of Things (IoT) wireless technologies. LoRaWAN is one of the emerging Low Power Wide Area Networks being developed for IoT applications. The latest LoRaWAN release v.1.1 has provided a security framework that includes data confidentiality protection, data integrity check, device authentication and key management. However, its key management part is only ambiguously defined. In this paper, a complete key management scheme is proposed for LoRaWAN. The scheme addresses key updating, key generation, key backup, and key backward compatibility. The proposed scheme was shown not only to enhance the current LoRaWAN standard, but also to meet the primary design consideration of LoRaWAN, i.e., low power consumption.


2011 ◽  
Vol 1 ◽  
pp. 295-299
Author(s):  
Jun Wu ◽  
Run Hua Shi ◽  
Hong Zhong

This paper proposes a hierarchical key management scheme in the mobile Ad hoc networks. In this scheme, there are two kinds of server nodes: the special server nodes and the ordinary server nodes, such that only when two kinds of server nodes collaborate can they provide a certificate service. In order to satisfy this special application, we design a new secret sharing scheme for splitting the system private key, in which it generates two different kinds of shares of the system private key: the special share and the ordinary share, where it needs at least one special share and t ordinary shares to recover the system private key, thus we call it threshold scheme. Furthermore, we present a distributed signature scheme for a user’s certificate in the mobile Ad hoc networks based on this secret sharing.


Sign in / Sign up

Export Citation Format

Share Document