Automatic Question Answering System Based on Convolutional Neural Network and Its Application to Waste Collection System

Author(s):  
Chuan Jiang ◽  
Qianmin Su ◽  
Lele Zhang ◽  
Bo Huang

As a typical cyber-physical-social system (CPSS), the waste collection system profoundly changes the current waste processing mode and greatly relieves the dilemma of waste disposal. However, the existing waste collection system does not provide the function that guides people to deliver the waste into the correct trash bin. In order to improve the efficiency of waste collection system, we propose an automatic question answering system based on convolutional neural network (CNN) to help people classify waste correctly. The construction process of automatic question answering system is divided into the following steps. We first construct a question answering dataset about waste classification, in which question answering pairs from the four waste categories (recyclable waste, harmful waste, dry waste, and wet waste) are included. After the dataset is constructed, we perform text preprocessing on the dataset, which includes denoising, Chinese word segmentation, and removing stop words. After text preprocessing, we use the Word2vec model as feature representation. Then, we construct a CNN and utilize the word embeddings as an input to train model. Finally, we deploy the trained model to the waste collection system, which can answer the question of waste classification that people ask. We also present a comparative analysis of the proposed method and traditional machine learning methods. The experiment shows that the proposed method has higher accuracy of waste classification than that of traditional machine learning methods.

2019 ◽  
Vol 18 (05) ◽  
pp. 1469-1499 ◽  
Author(s):  
Paola Zola ◽  
Paulo Cortez ◽  
Costantino Ragno ◽  
Eugenio Brentari

Due to the expansion of Internet and Web 2.0 phenomenon, there is a growing interest in sentiment analysis of freely opinionated text. In this paper, we propose a novel cross-source cross-domain sentiment classification, in which cross-domain-labeled Web sources (Amazon and Tripadvisor) are used to train supervised learning models (including two deep learning algorithms) that are tested on typically nonlabeled social media reviews (Facebook and Twitter). We explored a three-step methodology, in which distinct balanced training, text preprocessing and machine learning methods were tested, using two languages: English and Italian. The best results were achieved using undersampling training and a Convolutional Neural Network. Interesting cross-source classification performances were achieved, in particular when using Amazon and Tripadvisor reviews to train a model that is tested on Facebook data for both English and Italian.


2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Keqin Chen ◽  
Amit Yadav ◽  
Asif Khan ◽  
Yixin Meng ◽  
Kun Zhu

Concrete cracks are very serious and potentially dangerous. There are three obvious limitations existing in the present machine learning methods: low recognition rate, low accuracy, and long time. Improved crack detection based on convolutional neural networks can automatically detect whether an image contains cracks and mark the location of the cracks, which can greatly improve the monitoring efficiency. Experimental results show that the Adam optimization algorithm and batch normalization (BN) algorithm can make the model converge faster and achieve the maximum accuracy of 99.71%.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 170
Author(s):  
Muhammad Wasimuddin ◽  
Khaled Elleithy ◽  
Abdelshakour Abuzneid ◽  
Miad Faezipour ◽  
Omar Abuzaghleh

Cardiovascular diseases have been reported to be the leading cause of mortality across the globe. Among such diseases, Myocardial Infarction (MI), also known as “heart attack”, is of main interest among researchers, as its early diagnosis can prevent life threatening cardiac conditions and potentially save human lives. Analyzing the Electrocardiogram (ECG) can provide valuable diagnostic information to detect different types of cardiac arrhythmia. Real-time ECG monitoring systems with advanced machine learning methods provide information about the health status in real-time and have improved user’s experience. However, advanced machine learning methods have put a burden on portable and wearable devices due to their high computing requirements. We present an improved, less complex Convolutional Neural Network (CNN)-based classifier model that identifies multiple arrhythmia types using the two-dimensional image of the ECG wave in real-time. The proposed model is presented as a three-layer ECG signal analysis model that can potentially be adopted in real-time portable and wearable monitoring devices. We have designed, implemented, and simulated the proposed CNN network using Matlab. We also present the hardware implementation of the proposed method to validate its adaptability in real-time wearable systems. The European ST-T database recorded with single lead L3 is used to validate the CNN classifier and achieved an accuracy of 99.23%, outperforming most existing solutions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hua Xie ◽  
Minghua Zhang ◽  
Jiaming Ge ◽  
Xinfang Dong ◽  
Haiyan Chen

A sector is a basic unit of airspace whose operation is managed by air traffic controllers. The operation complexity of a sector plays an important role in air traffic management system, such as airspace reconfiguration, air traffic flow management, and allocation of air traffic controller resources. Therefore, accurate evaluation of the sector operation complexity (SOC) is crucial. Considering there are numerous factors that can influence SOC, researchers have proposed several machine learning methods recently to evaluate SOC by mining the relationship between factors and complexity. However, existing studies rely on hand-crafted factors, which are computationally difficult, specialized background required, and may limit the evaluation performance of the model. To overcome these problems, this paper for the first time proposes an end-to-end SOC learning framework based on deep convolutional neural network (CNN) specifically for free of hand-crafted factors environment. A new data representation, i.e., multichannel traffic scenario image (MTSI), is proposed to represent the overall air traffic scenario. A MTSI is generated by splitting the airspace into a two-dimension grid map and filled with navigation information. Motivated by the applications of deep learning network, the specific CNN model is introduced to automatically extract high-level traffic features from MTSIs and learn the SOC pattern. Thus, the model input is determined by combining multiple image channels composed of air traffic information, which are used to describe the traffic scenario. The model output is SOC levels for the target sector. The experimental results using a real dataset from the Guangzhou airspace sector in China show that our model can effectively extract traffic complexity information from MTSIs and achieve promising performance than traditional machine learning methods. In practice, our work can be flexibly and conveniently applied to SOC evaluation without the additional calculation of hand-crafted factors.


Sign in / Sign up

Export Citation Format

Share Document