NUMERICAL COMPUTATION OF CANARDS

2000 ◽  
Vol 10 (12) ◽  
pp. 2669-2687 ◽  
Author(s):  
JOHN GUCKENHEIMER ◽  
KATHLEEN HOFFMAN ◽  
WARREN WECKESSER

Singularly perturbed systems of ordinary differential equations arise in many biological, physical and chemical systems. We present an example of a singularly perturbed system of ordinary differential equations that arises as a model of the electrical potential across the cell membrane of a neuron. We describe two periodic solutions of this example that were numerically computed using continuation of solutions of boundary value problems. One of these periodic orbits contains canards, trajectory segments that follow unstable portions of a slow manifold. We identify several mechanisms that lead to the formation of these and other canards in this example.

Author(s):  
Ebiendele Peter ◽  
Asuelinmen Osoria

The objectives of this paper is to investigate singularly perturbed system of the fourth order differential equations of the type,       to establish the necessary and  sufficient new conditions that guarantee, uniform asymptotically stable, and absolute  stability of the  system. The Liapunov’s functions were the mathematical model used to establish the main results of this study. The study was motivated by some authors in the literature, Grujic LJ.T, and Hoppensteadt, F., and the results obtained  in this study improves upon their results to the case where more than two arguments was established.


Sign in / Sign up

Export Citation Format

Share Document