BIFURCATIONS IN SYNAPTICALLY COUPLED HODGKIN–HUXLEY NEURONS WITH A PERIODIC INPUT

2003 ◽  
Vol 13 (03) ◽  
pp. 653-666 ◽  
Author(s):  
KUNICHIKA TSUMOTO ◽  
TETSUYA YOSHINAGA ◽  
KAZUYUKI AIHARA ◽  
HIROSHI KAWAKAMI

We investigate bifurcations in responses of two Hodgkin–Huxley neurons coupled to each other and forced by a periodic pulse train, through the characteristics of synaptic transmissions with an α-function and a time delay. Based on a computational method we previously presented, we show a mechanism of transitions among various kinds of nonperiodic as well as harmonic and subharmonic frequency-locked oscillations. The bifurcation analysis clarifies dependence of sub- and supra-threshold dynamics on coupling and forcing effects.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


2018 ◽  
Vol 313 ◽  
pp. 306-315 ◽  
Author(s):  
Swati Tyagi ◽  
Subit K Jain ◽  
Syed Abbas ◽  
Shahlar Meherrem ◽  
Rajendra K Ray

2008 ◽  
Vol 77 (4) ◽  
Author(s):  
Ken-ichi Hino ◽  
Xiao Min Tong ◽  
Nobuyuki Toshima
Keyword(s):  

Author(s):  
LIZHONG QIANG ◽  
BIN-GUO WANG ◽  
ZHI-CHENG WANG

In this paper, we propose and study an almost periodic reaction–diffusion epidemic model in which disease latency, spatial heterogeneity and general seasonal fluctuations are incorporated. The model is given by a spatially nonlocal reaction–diffusion system with a fixed time delay. We first characterise the upper Lyapunov exponent $${\lambda ^*}$$ for a class of almost periodic reaction–diffusion equations with a fixed time delay and provide a numerical method to compute it. On this basis, the global threshold dynamics of this model is established in terms of $${\lambda ^*}$$ . It is shown that the disease-free almost periodic solution is globally attractive if $${\lambda ^*} < 0$$ , while the disease is persistent if $${\lambda ^*} < 0$$ . By virtue of numerical simulations, we investigate the effects of diffusion rate, incubation period and spatial heterogeneity on disease transmission.


2019 ◽  
Vol 794 ◽  
pp. 220-225
Author(s):  
Daiki Towata ◽  
Yuichi Tadano

In this study, a novel numerical method to analyze the bifurcation problemof a rate dependent material using the finite element method is proposed. The consistent stiffness matrix, which is required for a bifurcation analysis using the finite element method, for a rate dependent material is generally hard to compute, therefore, a computational method to calculate the tangent stiffness matrix based on a numerical differential is introduced so that exact bifurcation analyses for the rate dependent material can be conducted. A numerical example of the proposed method is demonstrated, and the adequacy of the proposed method is discussed.


2000 ◽  
Vol 08 (03) ◽  
pp. 255-261 ◽  
Author(s):  
DEBASIS MUKHERJEE ◽  
SANTANU RAY ◽  
DILIP KUMAR SINHA

This article concentrates on the study of delay effect of a mangrove ecosystem of detritus, detritivores and predator of detritivores. Local stability criteria are derived in the absence of delays. Conditions are found out for which the system undergoes a Hopf bifurcation. Further conditions are derived for which there can be no change in stability.


Sign in / Sign up

Export Citation Format

Share Document