GENERATING HYPERCHAOS VIA STATE FEEDBACK CONTROL

2005 ◽  
Vol 15 (10) ◽  
pp. 3367-3375 ◽  
Author(s):  
YUXIA LI ◽  
WALLACE K. S. TANG ◽  
GUANRONG CHEN

In this letter, a simple nonlinear state feedback controller is designed for generating hyperchaos from a three-dimensional autonomous chaotic system. The hyperchaotic system is not only demonstrated by computer simulations but also verified with bifurcation analysis, and is implemented experimentally via an electronic circuit.

2009 ◽  
Vol 19 (02) ◽  
pp. 651-660 ◽  
Author(s):  
GUOSI HU

This letter presents a new hyperchaotic system, which was obtained by adding a nonlinear quadratic controller to the first equation and a linear controller to the second equation of the three-dimensional autonomous modified Lorenz chaotic system. This system uses only two multipliers but can generate very complex strange attractors with three positive Lyapunov exponents. The system is not only demonstrated by numerical simulations but also implemented via an electronic circuit, showing very good agreement with the simulation results.


2006 ◽  
Vol 17 (04) ◽  
pp. 471-478 ◽  
Author(s):  
TIEGANG GAO ◽  
ZENGQIANG CHEN ◽  
ZHUZHI YUAN ◽  
GUANRONG CHEN

This paper presents a new hyperchaotic system, obtained by adding a controller to the second equation of the three-dimensional autonomous Chen's chaotic system. The hyper-chaos system undergoes a change from hyperchaos to limit cycle when the parameter varies. The system is not only demonstrated by computer simulations but also verified with bifurcation analysis.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


2017 ◽  
Vol 29 (3) ◽  
pp. 591-601
Author(s):  
Ryota Hayashi ◽  
◽  
Genki Matsuyama ◽  
Hisanori Amano ◽  
Hitomu Saiki ◽  
...  

[abstFig src='/00290003/14.jpg' width='300' text='Amphibian vehicle maneuvering simulator' ] This study proposes a maneuvering support system for an amphibian vehicle by applying a nonlinear state feedback control law for vehicle trajectory control. We consider that the vehicle should not drift sideways for good driving performance. To derive a nonlinear state feedback control law, we have defined ‘Maneuvering Trajectory’ as an additional reference trajectory that is generated by the driver’s maneuver. We have constructed a Lyapunov-like function for the trajectory control system. In this paper, we construct a vehicle-maneuvering simulator and set a clockwise circular reference trajectory. The efficiency of the proposed maneuvering support system is shown in the maneuvering simulations. We consider the case where the propulsive forces of the vehicle have limited influence on maneuverability. A new warning display system is proposed so that the driver can recognize if his or her maneuver is not suitable. Then, we examine the feasibility of the proposed warning display system through several simulations.


Sign in / Sign up

Export Citation Format

Share Document