A CHAOS-BASED RANDOM NUMBER GENERATOR FOR EIGHT-BIT MICRO-CONTROLLER SYSTEM

2008 ◽  
Vol 18 (03) ◽  
pp. 851-867 ◽  
Author(s):  
K. W. TANG ◽  
H. S. KWOK ◽  
WALLACE K. S. TANG ◽  
K. F. MAN

Random number generators are widely used in different applications. However, it is difficult to obtain a good random number generator in low precision and resource constrained system, such as an eight-bit micro-controller system which is still commonly used in industrial and consumer markets. This paper provides a practical solution for this problem based on chaotic systems. By the use of a modified Chua's circuit, it is demonstrated that the sampled state, after post-processing by a high-dimensional chaotic map, can be used as a random source even in an eight-bit environment. The randomness of the generated sequence is testified and confirmed by different statistical tests and the up-to-date statistical suite.

2014 ◽  
Vol 573 ◽  
pp. 181-186 ◽  
Author(s):  
G.P. Ramesh ◽  
A. Rajan

—Field-programmable gate array (FPGA) optimized random number generators (RNGs) are more resource-efficient than software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. A random number generator (RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random. The many applications of randomness have led to the development of several different methods for generating random data. Several computational methods for random number generation exist, but often fall short of the goal of true randomness though they may meet, with varying success, some of the statistical tests for randomness intended to measure how unpredictable their results are (that is, to what degree their patterns are discernible).LUT-SR Family of Uniform Random Number Generators are able to handle randomness only based on seeds that is loaded in the look up table. To make random generation efficient, we propose new approach based on SRAM storage device.Keywords: RNG, LFSR, SRAM


Author(s):  
Kentaro Tamura ◽  
Yutaka Shikano

Abstract A cloud quantum computer is similar to a random number generator in that its physical mechanism is inaccessible to its users. In this respect, a cloud quantum computer is a black box. In both devices, its users decide the device condition from the output. A framework to achieve this exists in the field of random number generation in the form of statistical tests for random number generators. In the present study, we generated random numbers on a 20-qubit cloud quantum computer and evaluated the condition and stability of its qubits using statistical tests for random number generators. As a result, we observed that some qubits were more biased than others. Statistical tests for random number generators may provide a simple indicator of qubit condition and stability, enabling users to decide for themselves which qubits inside a cloud quantum computer to use.


2020 ◽  
Author(s):  
Scott Stoller

Random numbers are an important, but often overlooked part of the modern computing environment. They are used everywhere around us for a variety of purposes, from simple decision making in video games such as a coin toss, to securing financial transactions and encrypting confidential communications. They are even useful for gambling and the lottery. Random numbers are generated in many ways. Pseudo random number generators (PRNGs) generate numbers based on a formula. True random number generators (TRNGs) capture entropy from the environment to generate randomness. As our society and our devices become more connected in the digital world, it is important to develop new ways to generate truly random numbers in order to secure communications and connected devices. In this work a novel memristor-based True Random Number Generator is designed and a physical implementation is fabricated and tested using a W-based self-directed channel (SDC) memristor. The circuit was initially designed and prototyped on a breadboard. A custom Printed Circuit Board (PCB) was fabricated for the final circuit design and testing of the novel memristor-based TRNG. The National Institute of Standards and Technology (NIST) Statistical Test Suite (STS) was used to check the output of the TRNG for randomness. The TRNG was demonstrated to pass 13 statistical tests out of the 15 in the STS.


2021 ◽  
Author(s):  
Kayvan Tirdad

Pseudo random number generators (PRNGs) are one of the most important components in security and cryptography applications. We propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This research is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. Also, we propose an application of Fuzzy Hopfield Neural Networks (FHNN) as pseudo random number generator. We compare the main features of ideal random number generators with our proposed PRNGs. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance of proposed HNN and FHNN. We also measure the performance of other standard PRNGs and compare the results with HNN and FHNN PRNG. We have shown that our proposed HNN and FHNN have good performance comparing to other PRNGs accordingly.


2020 ◽  
Vol 10 (2) ◽  
pp. 451 ◽  
Author(s):  
Octaviana Datcu ◽  
Corina Macovei ◽  
Radu Hobincu

This article presents a configurable, high-throughput pseudo-random number generator template targeting cryptographic applications. The template is parameterized using a chaotic map that generates data, an entropy builder that is used to periodically change the parameters of the map and a parameter change interval, which is the number of iterations after which the entropy builder will change the generator’s parameters. The system is implemented in C++ and evaluated using the TestU01 and NIST RNG statistical tests. The same implementation is used for a stream cipher that can encrypt and decrypt PNG images. A Monte-Carlo analysis of the seed space was performed. Results show that for certain combinations of maps and entropy builders, more than 90% of initial states (seeds) tested pass all statistical randomness tests. Also, the throughput is large enough so that a 8 K color image can be encrypted in 2 s on a modern laptop CPU (exact specifications are given in the paper). The conclusion is that chaotic maps can be successfully used as a building block for cryptographic random number generators.


2021 ◽  
Author(s):  
Kayvan Tirdad

Pseudo random number generators (PRNGs) are one of the most important components in security and cryptography applications. We propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This research is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. Also, we propose an application of Fuzzy Hopfield Neural Networks (FHNN) as pseudo random number generator. We compare the main features of ideal random number generators with our proposed PRNGs. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance of proposed HNN and FHNN. We also measure the performance of other standard PRNGs and compare the results with HNN and FHNN PRNG. We have shown that our proposed HNN and FHNN have good performance comparing to other PRNGs accordingly.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
I-Te Chen

Random numbers are very useful in simulation, chaos theory, game theory, information theory, pattern recognition, probability theory, quantum mechanics, statistics, and statistical mechanics. The random numbers are especially helpful in cryptography. In this work, the proposed random number generators come from white noise of audio and video (A/V) sources which are extracted from high-resolution IPCAM, WEBCAM, and MPEG-1 video files. The proposed generator applied on video sources from IPCAM and WEBCAM with microphone would be the true random number generator and the pseudorandom number generator when applied on video sources from MPEG-1 video file. In addition, when applying NIST SP 800-22 Rev.1a 15 statistics tests on the random numbers generated from the proposed generator, around 98% random numbers can pass 15 statistical tests. Furthermore, the audio and video sources can be found easily; hence, the proposed generator is a qualified, convenient, and efficient random number generator.


2019 ◽  
Vol 8 (2) ◽  
pp. 1-5
Author(s):  
Rajashree Chaurasia

Most programming languages have in-built functions for the sole purpose of generating pseudo-random numbers. This manuscript is aimed at analyzing the appropriateness of some of these in-built functions for some basic goodness-of-fit statistical tests for random number generators. The document is divided into four sections. The first section gives a broad introduction about randomness and the methods of generation of pseudo-random numbers. Section two discusses the statistical tests that were employed for testing the built-in library functions for random number generation. This section is followed by an analysis of the data collected for the various statistics in the third section, and lastly, the fourth section presents the results of the data analysis.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Junxiu Liu ◽  
Zhewei Liang ◽  
Yuling Luo ◽  
Lvchen Cao ◽  
Shunsheng Zhang ◽  
...  

Recent research showed that the chaotic maps are considered as alternative methods for generating pseudo-random numbers, and various approaches have been proposed for the corresponding hardware implementations. In this work, an efficient hardware pseudo-random number generator (PRNG) is proposed, where the one-dimensional logistic map is optimised by using the perturbation operation which effectively reduces the degradation of digital chaos. By employing stochastic computing, a hardware PRNG is designed with relatively low hardware utilisation. The proposed hardware PRNG is implemented by using a Field Programmable Gate Array device. Results show that the chaotic map achieves good security performance by using the perturbation operations and the generated pseudo-random numbers pass the TestU01 test and the NIST SP 800-22 test. Most importantly, it also saves 89% of hardware resources compared to conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document