APPLICATIONS OF LOCAL ACTIVITY THEORY OF CNN TO CONTROLLED COUPLED OREGONATOR SYSTEMS

2008 ◽  
Vol 18 (11) ◽  
pp. 3233-3297 ◽  
Author(s):  
LEQUAN MIN ◽  
YAN MENG ◽  
LEON O. CHUA

The study of chemical reactions with oscillating kinetics has drawn increasing interest over the last few decades because it also contributes towards a deeper understanding of the complex phenomena of temporal and spatial organizations in biological systems. The Cellular Nonlinear Network (CNN) local activity principle introduced by Chua [1997, 2005] has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice formed by coupled cells. Recently, Yang and Epstein proposed a reaction–diffusion Oregonator model with five variables for mimicking the Belousov–Zhabotinskii reaction. The Yang–Epstein model can generate oscillatory Turing patterns, including the twinkling eye, localized spiral and concentric wave structures. In this paper, we first propose a modified Yang–Epstein's Oregonator model by introducing a controller, and then map the revised Oregonator reaction–diffusion system into a reaction–diffusion Oregonator CNN. The Oregonator CNN has two cell equilibrium points Q1 = (0, 0, 0, 0, 0) and Q2, representing the "original" equilibrium point and an additional equilibrium point, respectively. The bifurcation diagrams of the Oregonator CNN are calculated using the analytical criteria for local activity. The bifurcation diagrams of the Oregonator CNN at Q1 have only locally active and unstable regions; and the ones at Q2 have locally passive regions, locally active and unstable regions, and edge of chaos regions. The calculated results show that the parameter groups of the Oregonator CNN which generate complex patterns are located on the edge of chaos regions, or on locally active unstable regions near the edge of chaos boundary. Numerical simulations show also that the Oregonator CNNs can generate similar dynamics patterns if the parameter groups are selected the same as those of the Yang–Epstein model. In particular, the parameters of the Yang–Epstein model which exhibit twinkling-eye patterns, and pinwheel patterns are located on the edges of chaos regions near the boundaries of locally active unstable regions with respect to Q2. The parameters of the Yang–Epstein models which exhibit labyrinthine stripelike patterns are located on the locally active unstable regions near the boundaries of the edge of chaos regions with respect to Q2. However the parameter group of the Yang–Epstein model with isolated spiral patterns is in the locally passive region near the boundary with edge of chaos with respect to Q2, whose trajectories tend to the equilibrium point Q2. Choosing a kind of triggering initial conditions given in [Chua, 1997], and the parameters of the Oregonator equations with the twinkling-eye patterns, pinwheel patterns, labyrinthine stripelike patterns, and isolated spiral patterns, three kinds of new spiral waves generated by the Oregonator CNNs were observed by numerical simulations. They seem to be essentially different patterns to those generated by the Oregonator CNNs with initial conditions consisting of equilibrium points plus small random perturbations. Our results demonstrate once again Chua's assertion that a wide spectrum of complex behaviors may exist if the corresponding CNN cell parameters are chosen in or near the edge of chaos region.

2003 ◽  
Vol 13 (08) ◽  
pp. 2189-2239 ◽  
Author(s):  
Lequan Min ◽  
Jingtao Wang ◽  
Xisong Dong ◽  
Guanrong Chen

This paper presents some analytical criteria for local activity principle in reaction–diffusion Cellular Nonlinear Network (CNN) cells [Chua, 1997, 1999] that have four local state variables with three ports. As a first application, a cellular nonlinear network model of tumor growth and immune surveillance against cancer (GISAC) is discussed, which has cells defined by the Lefever–Erneaux equations, representing the densities of alive and dead cancer cells, as well as the number of free and bound cytotoxic cells, per unit volume. Bifurcation diagrams of the GISAC CNN provide possible explanations for the mechanism of cancer diffusion, control, and elimination. Numerical simulations show that oscillatory patterns and convergent patterns (representing cancer diffusion and elimination, respectively) may emerge if selected cell parameters are located nearby or on the edge of the chaos domain. As a second application, a smoothed Chua's oscillator circuit (SCC) CNN with three ports is studied, for which the original prototype was introduced by Chua as a dual-layer two-dimensional reaction–diffusion CNN with three state variables and two ports. Bifurcation diagrams of the SCC CNN are computed, which only demonstrate active unstable domains and edges of chaos. Numerical simulations show that evolution of patterns of the state variables of the SCC CNN can exhibit divergence, periodicity, and chaos; and the second and the fourth state variables of the SCC CNNs may exhibit generalized synchronization. These results demonstrate once again Chua's assertion that a wide spectrum of complex behaviors may exist if the corresponding CNN cell parameters are chosen in or nearby the edge of chaos.


2002 ◽  
Vol 12 (05) ◽  
pp. 931-963 ◽  
Author(s):  
LEQUAN MIN ◽  
NA YU

The local activity principle of the Cellular Nonlinear Network (CNN) introduced by Chua [1997] has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice formed by coupled cells. This paper presents some analytical criteria for the local activity of two-port CNN cells with three or four state variables. As a first application, a coupled excitable cell model (ECM) CNN is introduced, which has cells defined by the Chay equations representing ionic events in excitable membranes in terms of a Hodgkin–Huxley type formalism. The bifurcation diagram of the ECM CNN supplies a possible explanation for the mechanism of arrhythmia (from normal to abnormal until stopping) of excitable cells: the cell parameter is changed from an active unstable domain to an edge of chaos. The member potentials along fibers are simulated numerically, where oscillatory patterns, chaotic patterns as well as convergent patterns are observed. As a second application, a smoothed Chua's circuit (SCC) CNN with two ports is presented, whose prototype has been introduced by Chua as a dual-layer two-dimensional reaction–diffusion CNN in order to obtain Turing patterns. The bifurcation diagrams of the SCC CNN are the same as those with one port, which have only active unstable domains and edges of chaos. Numerical simulations show that in the active unstable parameter domains, the evolutions of the patterns of the state variables of the SCC CNNs can exhibit divergence, periodicity and chaos, where, in the parameter domains located in the edge of chaos, periodic patterns and divergent patterns are observed. These results demonstrate once again the effectiveness of the local activity theory in choosing the parameters for the emergence of complex patterns of CNNs.


2000 ◽  
Vol 10 (06) ◽  
pp. 1295-1343 ◽  
Author(s):  
LEQUAN MIN ◽  
KENNETH R. CROUNSE ◽  
LEON O. CHUA

This paper presents analytical criteria for local activity in reaction–diffusion Cellular Nonlinear Network (CNN) cells [Chua, 1997, 1999] with four local state variables. As a first application, we apply the criteria to a Hodgkin–Huxley CNN, which has cells defined by the equations of the cardiac Purkinje fiber model of morphogenesis that was first introduced in [Noble, 1962] to describe the long-lasting action and pace-maker potentials of the Purkinje fiber of the heart. The bifurcation diagrams of the Hodgkin–Huxley CNN's supply a possible explanation for why a heart with a normal heart-rate may stop beating suddenly: The cell parameter of a normal heart is located in a locally active unstable domain and just nearby an edge of chaos. The membrane potential along a fiber is simulated in a Hodgkin–Huxley CNN by a computer. As a second application, we present a smoothed Chua's circuit (SCC) CNN. The bifurcation diagrams of the SCC CNN's show that there does not exist a locally passive domain, and the edges of chaos corresponding to different fixed-cell parameters are significantly different. Our computer simulations show that oscillatory patterns, chaotic patterns, or divergent patterns may emerge if the selected cell parameters are located in locally active domains but nearby the edge of chaos. This research demonstrates once again the effectiveness of the local activity theory in choosing the parameters for the emergence of complex (static and dynamic) patterns in a homogeneous lattice formed by coupled locally active cells.


2019 ◽  
Vol 10 (4) ◽  
pp. 355-376
Author(s):  
Shashi Kant

AbstractIn this paper, we investigate the deterministic and stochastic prey-predator system with refuge. The basic local stability results for the deterministic model have been performed. It is found that all the equilibrium points except the positive coexisting equilibrium point of the deterministic model are independent of the prey refuge. The trivial equilibrium point, predator free equilibrium point and prey free equilibrium point are always unstable (saddle point). The existence and local stability of the coexisting equilibrium point is related to the prey refuge. The permanence and extinction conditions of the proposed biological model have been studied rigourously. It is observed that the stochastic effect may be seen in the form of decaying of the species. The numerical simulations for different values of the refuge values have also been included for understanding the behavior of the model graphically.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Pattrawut Chansangiam

This paper investigates the chaotic behavior of a modified jerk circuit with Chua’s diode. The Chua’s diode considered here is a nonlinear resistor having a symmetric piecewise linear voltage-current characteristic. To describe the system, we apply fundamental laws in electrical circuit theory to formulate a mathematical model in terms of a third-order (jerk) nonlinear differential equation, or equivalently, a system of three first-order differential equations. The analysis shows that this system has three collinear equilibrium points. The time waveform and the trajectories about each equilibrium point depend on its associated eigenvalues. We prove that all three equilibrium points are of type saddle focus, meaning that the trajectory of (x(t),y(t)) diverges in a spiral form but z(t) converges to the equilibrium point for any initial point (x(0),y(0),z(0)). Numerical simulation illustrates that the oscillations are dense, have no period, are highly sensitive to initial conditions, and have a chaotic hidden attractor.


1998 ◽  
Vol 08 (12) ◽  
pp. 2321-2340 ◽  
Author(s):  
Radu Dogaru ◽  
Leon O. Chua

This paper present an application of the local activity theory [Chua, 1998] to a specific reaction–diffusion cellular nonlinear network (CNN) with cells defined by the model of morphogenesis first proposed in [Gierer & Meinhardt, 1972]. Both the local activity domain and a subset called the "edge of chaos" are identified in the cell parameter space. Within these domains, various cell parameter points were selected to illustrate the effectiveness of the local activity theory in choosing the parameters for the emergence of complex (static and dynamic) patterns in a homogeneous lattice formed by coupled locally active cells.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2001 ◽  
Vol 01 (01) ◽  
pp. 23-43 ◽  
Author(s):  
R. KHASMINSKII ◽  
G. N. MILSTEIN

The estimation of the linearized drift for stochastic differential equations with equilibrium points is considered. It is proved that the linearized drift matrix can be estimated efficiently if the initial condition for the system is chosen close enough to the equilibrium point. Some bounds for initial conditions ensuring the asymptotical efficiency of the estimator are found.


1998 ◽  
Vol 08 (06) ◽  
pp. 1107-1130 ◽  
Author(s):  
Radu Dogaru ◽  
Leon O. Chua

This paper presents an application of the local activity theory [Chua, 1998] to a specific reaction–diffusion cellular nonlinear network (CNN) with cells defined by a trimolecular model, called the Brusselator. Both the local activity domain and a subset called the "edge of chaos" are identified in the cell parameter space. Within these domains, various cell parameter points were selected to illustrate the effectiveness of the local activity theory in choosing the parameters for the emergence of complex (static and dynamic) patterns in a homogeneous lattice formed by coupled locally active cells.


2021 ◽  
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

This paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R0<1 and unstable at R0>1. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


Sign in / Sign up

Export Citation Format

Share Document