scholarly journals Three-Saddle-Foci Chaotic Behavior of a Modified Jerk Circuit with Chua’s Diode

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Pattrawut Chansangiam

This paper investigates the chaotic behavior of a modified jerk circuit with Chua’s diode. The Chua’s diode considered here is a nonlinear resistor having a symmetric piecewise linear voltage-current characteristic. To describe the system, we apply fundamental laws in electrical circuit theory to formulate a mathematical model in terms of a third-order (jerk) nonlinear differential equation, or equivalently, a system of three first-order differential equations. The analysis shows that this system has three collinear equilibrium points. The time waveform and the trajectories about each equilibrium point depend on its associated eigenvalues. We prove that all three equilibrium points are of type saddle focus, meaning that the trajectory of (x(t),y(t)) diverges in a spiral form but z(t) converges to the equilibrium point for any initial point (x(0),y(0),z(0)). Numerical simulation illustrates that the oscillations are dense, have no period, are highly sensitive to initial conditions, and have a chaotic hidden attractor.

1993 ◽  
Vol 03 (01) ◽  
pp. 239-258 ◽  
Author(s):  
LJ. KOCAREV ◽  
LJ. KARADZINOV ◽  
L. O. CHUA

In this paper we present an n-dimensional canonical piecewise-linear electrical circuit. It contains 2n two-terminal elements: n linear dynamic elements (capacitors and inductors), n - 1 linear resistors and one nonlinear (piecewise-linear) resistor. This circuit can realize any prescribed eigenvalue pattern, except for a set of measure zero, associated with (i) any n-dimensional two-region continuous piecewise-linear vector fields and (ii) any n-dimensional three-region symmetric (with respect to the origin) piecewise-linear continuous vector fields. We also proved a theorem that specifies the conditions for a vector field, realized with our canonical circuit, to have two or three equilibrium points.


1996 ◽  
Vol 06 (12a) ◽  
pp. 2175-2222 ◽  
Author(s):  
ANSHAN HUANG ◽  
LADISLAV PIVKA ◽  
CHAI WAH WU ◽  
MARTIN FRANZ

In this tutorial paper we present one of the simplest autonomous differential equations capable of generating chaotic behavior. Some of the fundamental routes to chaos and bifurcation phenomena are demonstrated with examples. A brief discussion of equilibrium points and their stability is given. For the convenience of the reader, a short computer program written in QuickBASIC is included to give the reader a possibility of quick hands-on experience with the generation of chaotic phenomena without using sophisticated numerical simulators. All the necessary parameter values and initial conditions are provided in a tabular form. Eigenvalue diagrams showing regions with particular eigenvalue patterns are given.


2020 ◽  
Vol 30 (12) ◽  
pp. 2050171
Author(s):  
Harsha Kharbanda ◽  
Sachin Kumar

This paper deals with a stage-structured predator–prey system which incorporates cannibalism in the predator population and harvesting in both population. The predator population is categorized into two divisions; adult predator and juvenile predator. The adult predator and prey species are harvested via hypothesis of catch-per-unit-effort, whereas juveniles are safe from being harvested. Mathematically, the dynamic behavior of the system such as existing conditions of equilibria with their stability is studied. The global asymptotic stability of prey-free equilibrium point and nonzero equilibrium point, if they exist, is proved by considering respective Lyapunov functions. The system undergoes transcritical and Hopf–Andronov bifurcations. The impacts of predator harvesting rate and prey harvesting rate on the system are analyzed by taking them as bifurcation parameters. The route to chaos is discussed by showing maximum Lyapunov exponent to be positive with sensitivity dependence on the initial conditions. The chaotic behavior of the system is confirmed by positive maximum Lyapunov exponent and non-integer Kaplan–Yorke dimension. Numerical simulations are executed to probe our theoretic findings. Also, the optimal harvesting policy is studied by applying Pontryagin’s maximum principle. Harvesting effort being an emphatic control instrument is considered to protect prey–predator population, and preserve them also through an optimal level.


2001 ◽  
Vol 01 (01) ◽  
pp. 23-43 ◽  
Author(s):  
R. KHASMINSKII ◽  
G. N. MILSTEIN

The estimation of the linearized drift for stochastic differential equations with equilibrium points is considered. It is proved that the linearized drift matrix can be estimated efficiently if the initial condition for the system is chosen close enough to the equilibrium point. Some bounds for initial conditions ensuring the asymptotical efficiency of the estimator are found.


Author(s):  
Tarek A. Elgohary ◽  
Tamás Kalmár-Nagy

Aerodynamic forces for a 2-DOF aeroelastic system oscillating in pitch and plunge are modeled as a piecewise linear function. Equilibria of the piecewise linear model are obtained and their stability/bifurcations analyzed. Two of the main bifurcations are border collision and rapid/Hopf bifurcations. Continuation is used to generate the bifurcation diagrams of the system. Chaotic behavior following the intermittent route is also observed. To better understand the grazing phenomenon sets of initial conditions associated with the system behavior are defined and analyzed.


2008 ◽  
Vol 18 (11) ◽  
pp. 3233-3297 ◽  
Author(s):  
LEQUAN MIN ◽  
YAN MENG ◽  
LEON O. CHUA

The study of chemical reactions with oscillating kinetics has drawn increasing interest over the last few decades because it also contributes towards a deeper understanding of the complex phenomena of temporal and spatial organizations in biological systems. The Cellular Nonlinear Network (CNN) local activity principle introduced by Chua [1997, 2005] has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice formed by coupled cells. Recently, Yang and Epstein proposed a reaction–diffusion Oregonator model with five variables for mimicking the Belousov–Zhabotinskii reaction. The Yang–Epstein model can generate oscillatory Turing patterns, including the twinkling eye, localized spiral and concentric wave structures. In this paper, we first propose a modified Yang–Epstein's Oregonator model by introducing a controller, and then map the revised Oregonator reaction–diffusion system into a reaction–diffusion Oregonator CNN. The Oregonator CNN has two cell equilibrium points Q1 = (0, 0, 0, 0, 0) and Q2, representing the "original" equilibrium point and an additional equilibrium point, respectively. The bifurcation diagrams of the Oregonator CNN are calculated using the analytical criteria for local activity. The bifurcation diagrams of the Oregonator CNN at Q1 have only locally active and unstable regions; and the ones at Q2 have locally passive regions, locally active and unstable regions, and edge of chaos regions. The calculated results show that the parameter groups of the Oregonator CNN which generate complex patterns are located on the edge of chaos regions, or on locally active unstable regions near the edge of chaos boundary. Numerical simulations show also that the Oregonator CNNs can generate similar dynamics patterns if the parameter groups are selected the same as those of the Yang–Epstein model. In particular, the parameters of the Yang–Epstein model which exhibit twinkling-eye patterns, and pinwheel patterns are located on the edges of chaos regions near the boundaries of locally active unstable regions with respect to Q2. The parameters of the Yang–Epstein models which exhibit labyrinthine stripelike patterns are located on the locally active unstable regions near the boundaries of the edge of chaos regions with respect to Q2. However the parameter group of the Yang–Epstein model with isolated spiral patterns is in the locally passive region near the boundary with edge of chaos with respect to Q2, whose trajectories tend to the equilibrium point Q2. Choosing a kind of triggering initial conditions given in [Chua, 1997], and the parameters of the Oregonator equations with the twinkling-eye patterns, pinwheel patterns, labyrinthine stripelike patterns, and isolated spiral patterns, three kinds of new spiral waves generated by the Oregonator CNNs were observed by numerical simulations. They seem to be essentially different patterns to those generated by the Oregonator CNNs with initial conditions consisting of equilibrium points plus small random perturbations. Our results demonstrate once again Chua's assertion that a wide spectrum of complex behaviors may exist if the corresponding CNN cell parameters are chosen in or near the edge of chaos region.


2005 ◽  
Vol 15 (04) ◽  
pp. 1411-1415 ◽  
Author(s):  
RAFAEL GONZÁLEZ LÓPEZ ◽  
MANUEL PRIAN RODRÍGUEZ ◽  
MIGUEL A. FERNÁNDEZ GRANERO ◽  
JUAN L. ROJAS OJEDA ◽  
EDUARDO ROMERO BRUZÓN

In this paper, we propose a new autonomous electronic oscillator designed with some modifications of the well-known Wien bridge oscillator. In the mathematical model planned for such a circuit, the nonlinearity in the operational amplifier saturation is considered and reference is made to the only equilibrium point at the origin of phase-space. We show how the relation between the bifurcation parameters starts stable oscillations, providing an example for chaotic behavior and bifurcations diagrams. Finally, we conclude with a brief summary of the oscillators operation using a parameters plane.


2010 ◽  
Vol 20 (02) ◽  
pp. 437-450 ◽  
Author(s):  
MARCELO MESSIAS ◽  
CRISTIANE NESPOLI ◽  
VANESSA A. BOTTA

The memristor is supposed to be the fourth fundamental electronic element in addition to the well-known resistor, inductor and capacitor. Named as a contraction for memory resistor, its theoretical existence was postulated in 1971 by L. O. Chua, based on symmetrical and logical properties observed in some electronic circuits. On the other hand its physical realization was announced only recently in a paper published on May 2008 issue of Nature by a research team from Hewlett–Packard Company. In this work, we present the bifurcation analysis of two memristor oscillators mathematical models, given by three-dimensional five-parameter piecewise-linear and cubic systems of ordinary differential equations. We show that depending on the parameter values, the systems may present the coexistence of both infinitely many stable periodic orbits and stable equilibrium points. The periodic orbits arise from the change in local stability of equilibrium points on a line of equilibria, for a fixed set of parameter values. This phenomenon is a kind of Hopf bifurcation without parameters. We have numerical evidences that such stable periodic orbits form an invariant surface, which is an attractor of the systems solutions. The results obtained imply that even for a fixed set of parameters the two systems studied may or may not present oscillations, depending on the initial condition considered in the phase space. Moreover, when they exist, the amplitude of the oscillations also depends on the initial conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yaoyu Wang ◽  
Ling Liu ◽  
Xinshan Cai ◽  
Chongxin Liu ◽  
Yan Wang ◽  
...  

In this paper, a new commensurate fractional-order chaotic oscillator is presented. The mathematical model with a weak feedback term, which is named hypogenetic flow, is proposed based on the Liu system. And with changing the parameters of the system, the hidden attractor can have no equilibrium points or line equilibrium. What is more interesting is that under the occasion that no equilibrium point can be obtained, the phase trajectory can converge to a minimal field under the lead of some initial conditions, similar to the fixed point. We call it the virtual equilibrium point. On the other hand, when the value of parameters can produce an infinite number of equilibrium points, the line equilibrium points are nonhyperbolic. Moreover than that, there are coexistence attractors, which can present hyperchaos, chaos, period, and virtual equilibrium point. The dynamic characteristics of the system are analyzed, and the parameter estimation is also studied. Then, an electronic circuit implementation of the system is built, which shows the feasibility of the system. At last, for the fractional system with hidden attractors, the finite-time synchronization control of the system is carried out based on the finite-time stability theory of the fractional system. And the effectiveness of the controller is verified by numerical simulation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jixiang Zhang ◽  
Xuan Xi

In this paper, a decision-making competition game model concerning governments, agricultural enterprises, and the public, all of which participate in the reduction of nitrogen emissions in the watersheds, is established based on bounded rationality. First, the stability conditions of the equilibrium points in the system are discussed, and the stable region of the Nash equilibrium is determined. Then, the bifurcation diagram, maximal Lyapunov exponent, strange attractor, and sensitive dependence on the initial conditions are shown through numerical simulations. The research shows that the adjustment speed of three players’ decisions may alter the stability of the Nash equilibrium point and lead to chaos in the system. Among these decisions, a government’s decision has the largest effect on the system. In addition, we find that some parameters will affect the stability of the system; when the parameters become beneficial for enterprises to reduce nitrogen emissions, the increase in the parameters can help control the chaotic market. Finally, the delay feedback control method is used to successfully control the chaos in the system and stabilize it at the Nash equilibrium point. The research of this paper is of great significance to the environmental governance decisions and nitrogen reduction management.


Sign in / Sign up

Export Citation Format

Share Document