PERIOD ADDING IN PIECEWISE LINEAR MAPS WITH TWO DISCONTINUITIES

2012 ◽  
Vol 22 (03) ◽  
pp. 1250068 ◽  
Author(s):  
FABIO TRAMONTANA ◽  
LAURA GARDINI ◽  
VIKTOR AVRUTIN ◽  
MICHAEL SCHANZ

In this work we consider the border collision bifurcations occurring in a one-dimensional piecewise linear map with two discontinuity points. The map, motivated by an economic application, is written in a generic form and considered in the stable regime, with all slopes between zero and one. We prove that the period adding structures occur in maps with more than one discontinuity points and that the Leonov's method to calculate the bifurcation curves forming these structures is applicable also in this case. We demonstrate the existence of particular codimension-2 bifurcation (big-bang bifurcation) points in the parameter space, from which infinitely many bifurcation curves are issuing associated with cycles involving several partitions. We describe how the bifurcation structure of a map with one discontinuity is modified by the introduction of a second discontinuity point, which causes orbits to appear located on three partitions and organized again in a period-adding structure. We also describe particular codimension-2 bifurcation points which represent limit sets of doubly infinite sequences of bifurcation curves and appear due to the existence of two discontinuities.

Author(s):  
O. Jenkinson ◽  
M. Pollicott ◽  
P. Vytnova

AbstractIommi and Kiwi (J Stat Phys 135:535–546, 2009) showed that the Lyapunov spectrum of an expanding map need not be concave, and posed various problems concerning the possible number of inflection points. In this paper we answer a conjecture in Iommi and Kiwi (2009) by proving that the Lyapunov spectrum of a two branch piecewise linear map has at most two points of inflection. We then answer a question in Iommi and Kiwi (2009) by proving that there exist finite branch piecewise linear maps whose Lyapunov spectra have arbitrarily many points of inflection. This approach is used to exhibit a countable branch piecewise linear map whose Lyapunov spectrum has infinitely many points of inflection.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550177
Author(s):  
Zouhair Ben Jemaa ◽  
Daniele Fournier-Prunaret ◽  
Safya Belghith

In many applications, sequences generated by chaotic maps have been considered as pseudo-random sequences. This paper deals with the correlation between chaotic sequences generated by a given piecewise linear map; we have based the measure of the correlation on the statistics of the Kendall tau, which is usually used in the field of statistics. We considered three piecewise linear maps to generate chaotic sequences and computed the statistics of the Kendall tau of couples of sequences obtained from randomly chosen couples of initial conditions. We essentially found that the results depend on the considered chaotic map and that it is possible to approach the uncorrelated case.


2009 ◽  
Vol 29 (5) ◽  
pp. 1549-1583 ◽  
Author(s):  
PAWEŁ GÓRA

AbstractWe find an explicit formula for the invariant densityhof an arbitrary eventually expanding piecewise linear mapτof an interval [0,1]. We do not assume that the slopes of the branches are the same and we allow arbitrary number of shorter branches touching zero or touching one or hanging in between. The construction involves the matrixSwhich is defined in a way somewhat similar to the definition of the kneading matrix of a continuous piecewise monotonic map. Under some additional assumptions, we prove that if 1 is not an eigenvalue ofS, then the dynamical system (τ,h⋅m) is ergodic with full support.


1981 ◽  
Vol 24 (3) ◽  
pp. 433-451 ◽  
Author(s):  
James B. McGuire ◽  
Colin J. Thompson

A complete analysis is given of the iterative properties of two piece-piecewise linear maps on an interval, from the point of view of a doubling transformation obtained by functional composition and rescaling. We show how invariant measures may be constructed for such maps and that parameter values where this may be done form a dense set in a one-dimensional subset of parameter space.


2007 ◽  
Vol 17 (04) ◽  
pp. 1185-1197 ◽  
Author(s):  
ALEXANDER L. BARANOVSKI ◽  
ANTHONY J. LAWRANCE

This paper is principally concerned with the effect of splitting and permuting, or shifting, the branches of an onto piecewise linear map, with particular regard to the effect on the autocorrelation of the associated chaotic sequence. This is shown to be a chaotic function of the shifting parameter of the map, and its sensitivity with respect to minute changes in this parameter is termed autocorrelation chaos. This paper presents both analytical and computational studies of the phenomenon.


2010 ◽  
Vol 20 (10) ◽  
pp. 3085-3104 ◽  
Author(s):  
LAURA GARDINI ◽  
FABIO TRAMONTANA ◽  
VIKTOR AVRUTIN ◽  
MICHAEL SCHANZ

50 years ago (1959) in a series of publications by Leonov, a detailed analytical study of the nested period adding bifurcation structure occurring in piecewise-linear discontinuous 1D maps was presented. The results obtained by Leonov are barely known, although they allow the analytical calculation of border-collision bifurcation subspaces in an elegant and much more efficient way than it is usually done. In this work we recall Leonov's approach and explain why it works. Furthermore, we slightly improve the approach by avoiding an unnecessary coordinate transformation, and also demonstrate that the approach can be used not only for the calculation of border-collision bifurcation curves.


2020 ◽  
Vol 30 (03) ◽  
pp. 2030006 ◽  
Author(s):  
David J. W. Simpson

For piecewise-linear maps, the phenomenon that a branch of a one-dimensional unstable manifold of a periodic solution is completely contained in its stable manifold is codimension-two. Unlike codimension-one homoclinic corners, such “subsumed” homoclinic connections can be associated with stable periodic solutions. The purpose of this paper is to determine the dynamics near a generic subsumed homoclinic connection in two dimensions. Assuming the eigenvalues associated with the periodic solution satisfy [Formula: see text], in a two-parameter unfolding there exists an infinite sequence of roughly triangular regions within which the map has a stable single-round periodic solution. The result applies to both discontinuous and continuous maps, although these cases admit different characterizations for the border-collision bifurcations that correspond to boundaries of the regions. The result is illustrated with a discontinuous map of Mira and the two-dimensional border-collision normal form.


Sign in / Sign up

Export Citation Format

Share Document