A First Order Automated Lie Transform

2015 ◽  
Vol 25 (14) ◽  
pp. 1540026 ◽  
Author(s):  
Elbaz I. Abouelmagd ◽  
A. Mostafa ◽  
Juan L. G. Guirao

The objective of the present paper is to focus on the problem of the normalization of a Hamiltonian system via the elimination of angle variables involved using the Lie transform technique. The algorithm that we construct assumes that the Hamiltonian is periodic in [Formula: see text] angle variables, with two rates: fast and slow. If the angle variables have the same rate only one transformation is required. The equations needed to evaluate the elements of each transformation and the secular perturbations are constructed.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050126
Author(s):  
Li Zhang ◽  
Chenchen Wang ◽  
Zhaoping Hu

From [Han et al., 2009a] we know that the highest order of the nilpotent center of cubic Hamiltonian system is [Formula: see text]. In this paper, perturbing the Hamiltonian system which has a nilpotent center of order [Formula: see text] at the origin by cubic polynomials, we study the number of limit cycles of the corresponding cubic near-Hamiltonian systems near the origin. We prove that we can find seven and at most seven limit cycles near the origin by the first-order Melnikov function.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Mohamed Abdalla ◽  
Sahar Ahmed Idris ◽  
Ibrahim Mekawy

In light of the previous recent studies by Jaume Llibre et al. that dealt with the finite cycles of generalized differential Kukles polynomial systems using the first- and second-order mean theorem such as (Nonlinear Anal., 74, 1261–1271, 2011) and (J. Dyn. Control Syst., vol. 21, 189–192, 2015), in this work, we provide upper bounds for the maximum number of limit cycles bifurcating from the periodic orbits of Hamiltonian system using the averaging theory of first order.


Sign in / Sign up

Export Citation Format

Share Document