Delayed Feedback Control and Bifurcation Analysis in a Chaotic Chemostat System

2015 ◽  
Vol 25 (06) ◽  
pp. 1550087 ◽  
Author(s):  
Zhichao Jiang ◽  
Wanbiao Ma

In this paper, the effect of delay on a nonlinear chaotic chemostat system with delayed feedback is investigated by regarding delay as a parameter. At first, the stability of the positive equilibrium and the existence of Hopf bifurcations are obtained. Then an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, some numerical simulation examples are given, which indicate that the chaotic oscillation can be converted into a stable steady state or a stable periodic orbit when delay passes through certain critical values.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Rongyan Zhang

A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associate characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction, and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.


2015 ◽  
Vol 25 (10) ◽  
pp. 1530026 ◽  
Author(s):  
Rui Yang ◽  
Yongli Song

In this paper, a diffusive activator–inhibitor model in vascular mesenchymal cells is considered. On one hand, we investigate the stability of the equilibria of the system without diffusion. On the other hand, for the unique positive equilibrium of the system with diffusion the conditions ensuring stability, existence of Hopf and steady state bifurcations are given. By applying the center manifold and normal form theory, the normal forms corresponding to Hopf bifurcation and steady state bifurcation are derived explicitly. Numerical simulations are employed to illustrate where the spatially homogeneous and nonhomogeneous periodic solutions and the steady states can emerge. The numerical results verify the obtained theoretical conclusions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xuhui Li

A competitive model of market structure with consumptive delays is considered. The local stability of the positive equilibrium and the existence of local Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equation. The explicit formulas determining the stability and other properties of bifurcating periodic solutions are derived by using normal form theory and center manifold argument. Finally, numerical simulations are given to support the analytical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Na Li ◽  
Wei Tan ◽  
Huitao Zhao

This paper mainly investigates the dynamical behaviors of a chaotic system withoutilnikov orbits by the normal form theory. Both the stability of the equilibria and the existence of local Hopf bifurcation are proved in view of analyzing the associated characteristic equation. Meanwhile, the direction and the period of bifurcating periodic solutions are determined. Regarding the delay as a parameter, we discuss the effect of time delay on the dynamics of chaotic system with delayed feedback control. Finally, numerical simulations indicate that chaotic oscillation is converted into a steady state when the delay passes through a certain critical value.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Junbiao Guan

We investigate the local Hopf bifurcation in Genesio system with delayed feedback control. We choose the delay as the parameter, and the occurrence of local Hopf bifurcations are verified. By using the normal form theory and the center manifold theorem, we obtain the explicit formulae for determining the stability and direction of bifurcated periodic solutions. Numerical simulations indicate that delayed feedback control plays an effective role in control of chaos.


2017 ◽  
Vol 27 (11) ◽  
pp. 1750177 ◽  
Author(s):  
Xin Wei ◽  
Junjie Wei

A diffusive photosensitive CDIMA system with delayed feedback subject to Neumann boundary conditions is considered. We derive the conditions of the occurrence of Turing instability. We also investigate the influence of delay on the stability of the positive equilibrium of the system, and prove that delay induces the occurrence of Hopf bifurcation. By computing the normal form on the center manifold, we give the formulas determining the properties of the Hopf bifurcation. Finally, we give some numerical simulations to support and strengthen the theoretical results. Our study shows that diffusion and delayed feedback can effect the stability of the equilibrium of the system.


2007 ◽  
Vol 17 (12) ◽  
pp. 4309-4322 ◽  
Author(s):  
MIN XIAO ◽  
JINDE CAO

Time-delayed feedback has been introduced as a powerful tool to control unstable periodic orbits or control unstable steady states. In the present paper, regarding the delay as a parameter, we investigate the effect of delay on the dynamics of Lü system with delayed feedback. After the effect of delay on the steady states is analyzed, Hopf bifurcation is studied, where the direction, stability and other properties of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. Finally, we provide several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950028
Author(s):  
Keying Song ◽  
Wanbiao Ma ◽  
Zhichao Jiang

In this paper, a model with time delay describing biodegradation of Microcystins (MCs) is investigated. Firstly, the stability of the positive equilibrium and the existence of Hopf bifurcations are obtained. Furthermore, an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out to illustrate the applications of the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


Sign in / Sign up

Export Citation Format

Share Document